Spelling suggestions: "subject:"metal 2oxides"" "subject:"metal akoxides""
191 |
Charakterisierung von funktionellen Metalloxidgrenzflächen mittels Röntgenmethoden und ElektronenmikroskopieHanzig, Florian 05 July 2018 (has links)
Grenzflächen von Übergangsmetalloxiden in Halbleiterbauelementen bestimmen die Funktionalität auf vielfältige Art und Weise. In dieser Arbeit werden die Nb2O5|Metall- (Metall = Al, Ti, Pt), die TiN|TiO2- und die Si|SrTiO3-Grenzfläche mittels röntgenographischer Methoden sowie der Transmissionselektronenmikroskopie hinsichtlich ihrer Defektchemie, kristallographischen Anpassung und thermischen Stabilität untersucht. Die lokale elektronische Analyse der Nb2O5|Ti- sowie Nb2O5|Al-Grenzfläche zeigt die Ausbildung eines Sauerstoffleerstellengradienten im Nb2O5 durch die Oxidation der unedlen Elektrode. Der elektrische Widerstand dieser beiden Metall-Isolator-Metall-(MIM)-Stapel mit Pt-Bodenelektrode kann reversibel geschalten werden. Diese experimentellen Befunde lassen sich direkt miteinander verknüpfen, da an der Nb2O5|Pt-Grenzfläche weder eine Redoxreaktion stattfindet, noch im Pt|Nb2O5|Pt-Stapel der Widerstand geschaltet werden kann. MIM-Stapel bestehend aus TiN, TiO2 und Au weisen zwar Schaltverhalten des elektrischen Widerstandes auf, lassen aber keine Abweichung der Stöchiometrie im Transmissionselektronenmikroskop erkennen. Die strukturellen Betrachtungen der TiN|TiO2-Grenzfläche verdeutlichen, dass bei der Heteroepitaxie das Aufwachsen der thermodynamisch stabileren TiO2-Modifikation unterdrückt wird, insofern das Substrat eine geeignete kristallographische Orientierung aufweist. So kristallisiert Anatas, eher als Rutil, auf der (001)-Oberfläche des TiN mit einer festen Orientierungsbeziehung. Die thermische Stabilität der Si|SrTiO3-Grenzfläche hängt hingegen stark von der Kationenstöchiometrie des ternären Perowskites ab. Für die Kristallisation der amorphen SrTiO3-Dünnschichten ergibt sich eine Korrelation zwischen der Einsatztemperatur und der Schichtabscheidemethode. / Interfaces of transition metal oxides in semiconductor devices determine their functionalities in a variety of ways. In this work Nb2O5|metal- (metal = Al, Ti, Pt), TiN|TiO2- and Si|SrTiO3-interfaces are investigated by means of X-ray-based methods and transmission electron microscopy with respect to their defect chemistry, crystallographic orientation and thermal stability. From local electronic analysis of the Nb2O5|Ti- as well as Nb2O5|Al-interface the formation of an oxygen vacancy gradient in the Nb2O5 caused by an oxidation of the ignoble electrode can be inferred. The electrical resistance of both types of metal-insulator-metal-(MIM)-stacks, containing a Pt bottom electrode, can be switched reversibly. These experimental findings are directly linked to each other, since at the Nb2O5|Pt-interface no redox reaction based oxygen redistribution takes place and the Pt|Nb2O5|Pt-stack reveals no switching behavior. Using MIM-stacks consisting of TiN, TiO2 und Au switching the electrical resistance is possible, but no stoichiometric deviation was observed in the transmission electron microscope. Structural considerations at the TiN|TiO2-interface clarify that hetero-epitaxy can suppress the growth of the thermodynamically stable TiO2-modification due to suitable crystallographic orientation of the TiN-substrate. Thus, anatase, rather than rutile, crystallizes on the (001)-TiN-surface with a fixed structural coherency. The thermal stability of the Si|SrTiO3-interface strongly depends on the cation stoichiometry of the ternary perovskite. Therefore, crystallization onset temperature correlates to the specific technique of thin film deposition.
|
192 |
Two-dimensional electron systems in functional oxides studied by photoemission spectroscopy / Gaz bidimensionnels d’électrons dans les oxydes fonctionnels étudiés par spectroscopie de photoémissionRödel, Tobias 08 September 2016 (has links)
De nombreux oxydes de métaux de transition (TMOs) possèdent des propriétés physiques complexes (ferroélectricité, magnétisme, supraconductivité à haute Tc ou magnétorésistance colossale). Les différents degrés de liberté (le réseau, la charge, le spin ou l'ordre orbitalaire) interagissent pour donner des phases différentes, très proches en énergie, qui vont former une grande variété d'états fondamentaux accessibles. La possibilité de fabriquer des hétérostructures de TMOs a encore accru la complexité de ces systèmes, de nouveaux phénomènes apparaissant aux interfaces. Un exemple typique est le gaz d'électrons bidimensionnel (2DEG) créé à l'interface entre deux oxydes isolants, LaAlO3 et SrTiO3, qui montre une transition métal-isolant, du magnétisme ou de la supraconductivité (contrôlée par une tension de grille). Le point de départ de cette thèse a été la découverte d'un 2DEG similaire à la surface nue de SrTiO3 fracturée sous vide, rendant possible l'étude de sa structure électronique par photoémission angulaire.Dans cette thèse, l'étude de surfaces préparées, plutôt que de petites facettes fracturées, a permis l'obtention de données spectroscopiques possédant des largeurs de raie proches des valeurs intrinsèques. Il est alors possible d'étudier les effets à N corps comme la renormalisation de la self-énergie due à l'interaction électron-phonon.Ces recherches sur la structure électronique du 2DEG à la surface de SrTiO3 ont pris un tour nouveau lorsqu'une texture de spin complexe y a été mesurée par photoémission résolue en spin. Nous présentons des résultats qui contredisent ces conclusions et nous discutons des raisons pouvant expliquer ce désaccord.Une des motivations de cette thèse était de savoir si la structure électronique et les propriétés du 2DEG pouvaient être contrôlées. L'étude du 2DEG sur des surfaces (110) et (111) de SrTiO3 révèle que sa structure de bandes (ordre orbitalaire, symétrie de la surface de Fermi, masses effectives) peut être ajustée en confinant les électrons sur des surfaces de différentes orientations du même matériau.Un succès majeure est la mise en évidence de 2DEGs à la surface de nombreux autres TMOs (TiO2-anatase, CaTiO3, BaTiO3) ou d'oxydes plus simples utilisés dans les applications (ZnO). Dans tous ces oxydes, nous avons identifié les lacunes en oxygène comme étant à l'origine de la création des 2DEGs.Dans l'anatase, ou d'autres TMOs en configuration électronique initiale d0, les lacunes en oxygène produisent à la fois des électrons localisés ou itinérants (le 2DEG). Il peut être subtile de prévoir quel est le cas est le plus favorable énergétiquement comme le démontre l'étude de deux polymorphes de TiO2, anatase et rutile. Dans CaTiO3, l’octaèdre formé par les atomes d'oxygène autour du Ti est incliné. Cette rupture de symétrie provoque un mélange des orbitales d et modifie le 2DEG. Dans BaTiO3, la création d'un 2DEG entraîne la coexistence de deux phénomènes normalement incompatibles, la ferroélectricité et la métallicité, dans deux zones spatialement distinctes du même matériau. Ce travail démontre qu'un 2DEG existe aussi à la surface de ZnO qui est, contrairement aux oxydes à base de Ti, plutôt un semiconducteur conventionnel, le caractère des orbitales pour les électrons itinérants étant alors de type s et non de type d.Le principal résultat est la mise au point d'une méthode simple et versatile pour la création de 2DEGs en évaporant de l'aluminium sur des surfaces d'oxydes. Une réaction d'oxydo-réduction entre le métal et l'oxyde permet de créer un 2DEG à l'interface entre le métal oxydé et l'oxyde réduit. Dans cette thèse, les 2DEGs ont été étudiés uniquement par photoémission sous ultra-vide. Cette méthode ouvre la possibilité d'étudier ces 2DEGs dans des conditions de pression ambiante en utilisant, par exemple, des techniques de transport, un pas important vers la production de masse et à bas coûts de 2DEGs dans les oxydes pour de futures applications. / Many transition metal oxides (TMOs) show complex physics, ranging from ferroelectricity to magnetism, high-Tc superconductivity and colossal magnetoresistance. The existence of a variety of ground states often occurs as different degrees of freedom (e.g. lattice, charge, spin, orbital) interact to form different competing phases which are quite similar in energy. The capability to epitaxially grow heterostructures of TMOs increased the complexity even more as new phenomena can emerge at the interface. One typical example is the two-dimensional electron system (2DES) at the interface of two insulating oxides, namely LaAlO3/SrTiO3, which shows metal-to-insulator transitions, magnetism or gate-tunable superconductivity. The origin of this thesis was the discovery of a similar 2DES at the bare surface of SrTiO3 fractured in vacuum, making it possible to study its electronic structure by angle-resolved photoemission spectroscopy (ARPES).In this thesis, the study of well-prepared surfaces, instead of small fractured facets, results in spectroscopic data showing line widths approaching the intrinsic value. This approach allows a detailed analysis of many-body phenomena like the renormalization of the self-energy due to electron-phonon interaction.Additionally, the understanding of the electronic structure of the 2DES at the surface of SrTiO3(001) was given an additional turn by the surprising discovery of a complex spin texture measured by spin-ARPES. In this thesis data is presented which contradicts these conclusions and discusses possible reasons for the discrepancy.One major motivation of this thesis was the question if and how the electronic structure and the properties of the 2DES can be changed or controlled. In this context, the study of 2DESs at (110) and (111) surface revealed that the electronic band structure of the 2DES (orbital ordering, symmetry of the Fermi surface, effective masses) can be tuned by confining the electrons at different surface orientations of the same material, namely SrTiO3.A major achievement of this thesis is the generalization of the existence of a 2DES in SrTiO3 to many other surfaces and interfaces of TMOs (TiO2 anatase, CaTiO3, BaTiO3) and even simpler oxides already used in modern applications (ZnO). In all these oxides, we identify oxygen vacancies as the origin for the creation of the 2DESs.In anatase and other doped d0 TMOs, both localized and itinerant electrons (2DES) can exist due to oxygen vacancies. Which of the two cases is energetically favorable depends on subtle differences as demonstrated by studying two polymorphs of the same material (anatase and rutile).In CaTiO3, the oxygen octahedron around the Ti ion is slightly tilted. This symmetry breaking results in the mixing of different d-orbitals demonstrating again why and how the electronic structure of the 2DES can be altered.In BaTiO3, the creation of a 2DES results in the coexistence of the two, usually mutual exclusive, phenomena of ferroelectricity and metallicity in the same material by spatially separating the two.Moreover, this work demonstrates that the 2DES also exists in ZnO which is - compared to the Ti-based oxides - rather a conventional semiconductor as the orbital character of the itinerant electrons is of s and not d-type.The main result of this thesis is the demonstration of a simple and versatile technique for the creation of 2DESs by evaporating Al on oxide surfaces. A redox reaction between metal and oxide results in a 2DES at the interface of the oxidized metal and the reduced oxide. In this thesis the study of such interfacial 2DESs was limited to photoemission studies in ultra high vacuum. However, this technique opens up the possibility to study 2DESs in functional oxides in ambient conditions by e.g. transport techniques, and might be an important step towards cost-efficient mass production of 2DESs in oxides for future applications.
|
193 |
Growth, Optimization, and Characterization of Transition Metal Nitrides and Transition Metal Oxides for Electronic and Optical ApplicationsBiegler, Zachary J. January 2019 (has links)
No description available.
|
194 |
Interplay between ferroelectric and resistive switching in doped crystalline HfO₂Max, Benjamin, Pešić, Milan, Slesazeck, Stefan, Mikolajick, Thomas 16 August 2022 (has links)
Hafnium oxide is widely used for resistive switching devices, and recently it has been discovered that ferroelectricity can be established in (un-)doped hafnium oxide as well. Previous studies showed that both switching mechanisms are influenced by oxygen vacancies. For resistive switching, typically amorphous oxide layers with an asymmetric electrode configuration are used to create a gradient of oxygen vacancies. On the other hand, ferroelectric switching is performed by having symmetric electrodes and requires crystalline structures. The coexistence of both effects has recently been demonstrated. In this work, a detailed analysis of the reversible interplay of both switching mechanisms within a single capacitor cell is investigated. First, ferroelectric switching cycles were applied in order to drive the sample into the fatigued stage characterized by increased concentration of oxygen vacancies in the oxide layer. Afterwards, a forming step that is typical for the resistive switching devices was utilized to achieve a soft breakdown. In the next step, twofold alternation between the high and low resistance state is applied to demonstrate the resistive switching behavior of the device. Having the sample in the high resistance state with a ruptured filament, ferroelectric switching behavior is again shown within the same stack. Interestingly, the same endurance as before was observed without a hard breakdown of the device. Therefore, an effective sequence of ferroelectric—resistive—ferroelectric switching is realized. Additionally, the dependence of the forming, set, and reset voltage on the ferroelectric cycling stage (pristine, woken-up and fatigued) is analyzed giving insight into the physical device operation.
|
195 |
Synthesis and Characterization of Ordered Mesoporous Inorganic Nanocomposite MaterialsFulvio, Pasquale Fernando 30 November 2009 (has links)
No description available.
|
196 |
On the relationship between field cycling and imprint in ferroelectric Hf₀.₅Zr₀.₅O₂Fengler, F. P. G., Hoffman, M., Slesazeck, S., Mikolajick, T., Schroeder, U. 17 August 2022 (has links)
Manifold research has been done to understand the detailed mechanisms behind the performance instabilities of ferroelectric capacitors based on hafnia. The wake-up together with the imprint might be the most controversially discussed phenomena so far. Among crystallographic phase change contributions and oxygen vacancy diffusion, electron trapping as the origin has been discussed recently. In this publication, we provide evidence that the imprint is indeed caused by electron trapping into deep states at oxygen vacancies. This impedes the ferroelectric switching and causes a shift of the hysteresis. Moreover, we show that the wake-up mechanism can be caused by a local imprint of the domains in the pristine state by the very same root cause. The various domain orientations together with an electron trapping can cause a constriction of the hysteresis and an internal bias field in the pristine state. Additionally, we show that this local imprint can even cause almost anti-ferroelectric like behavior in ferroelectric films.
|
197 |
Studies of the Surface Reactivity of Metal Oxyhydroxides and Sulfides with Relevance to Environmental ChemistryPierre-Louis, Andro-Marc January 2014 (has links)
With the benefits of an ever increasing advance of industrialization around the globe come formidable environmental CO2 . Three environmental problems that have relevance to the research described in this thesis are the 1) buildup of atmospheric CO2 gas through the burning of fossil fuels, 2) eutrophication of aquatic systems, and 3) the acidification of environments from acid mine drainage (AMD) resulting from coal-mining activities. In particular research is presented in this thesis that investigated the surface chemistry of CO2 and phosphate (PO43-) on a suite of environmentally relevant iron oxyhydroxide materials and the chemistry of phospholipid molecules on environmentally relevant iron sulfide surfaces to suppress AMD. To develop a microscopic understanding of the surface chemistry of the different systems, an array of experimental and computational techniques were used in the research. Techniques included X-ray photoelectron spectroscopy, atomic adsorption, X-ray diffraction, scanning transmission microscopy with electron dispersive X-ray spectroscopy (STEM/EDS), ion chromatography (IC), and attenuated total reflectance Fourier transform Infrared (ATR-FTIR). Results from the latter technique were interpreted with the aid of density function theory (DFT) calculations. Iron oxyhydroxides, which consisted of ferrihydrite (FeOOH), goethite α-FeOOH), ferrimagnetic ferrihydrite (FerriFh), and aluminum-doped iron oxyhydroxide (content from 0-100 mol%) were synthesized and studied before and after exposure to gaseous CO2 , CO32-, and PO43- species. FeOOH and mixed Al/Fe oxyhydroxide surfaces showed high affinities for the formation of carbonate and bicarbonate species upon exposure to gaseous CO2 . Within the Al/Fe oxyhydroxide circumstance, a low Al level of incorporation in the iron oxyhydroxide structure caused a slight increase in surface area and increase in the amount of oxyanion (e.g., CO32- or PO43-) adsorption up to an Al level of 30 mol%. Significant changes were observed in the binding geometry of the adsorbed complexes on the Al/Fe mineral compared to single phase α-FeOOH, AlOOH, and FeOOH surfaces. ATR-FTIR results combined with vibrational frequency (DFT) calculations suggested the formation of multiple phosphate surface complexes via a variety of configurations such as inner-sphere/outer-sphere bidentate, monodentate depending on the solution pH and the Al mol% substituted into the Fe-oxyhydroxide. Studies investigated the adsorption of CO2 on FerriFh and compared those results to CO2 on ferrihydrite. The CO2 pressures used in these particular studies ranged from 1 to 57.8 bars. It is found that citrate bound species, resulting from the synthesis conditions used to make FerriFh, blocked surface sites for the formation of carbonate and bicarbonate species on the magnetic FerriFh and ferrihydrite oxyhydroxide minerals upon CO2 (gas) exposure. A bicarbonate or bent-CO2 like species (~1220 cm-1) formed at lower CO2 pressures (≤ 3.5 bars) but was absent at the higher pressures. Additional studies investigated the adsorption of various phospholipid molecules on pyrite, and iron sulfide with FeS2 stoichiometry. These studies were focused on suppressing the oxidative decomposition of pyrite to sulfuric acid, the root cause of AMD. Batch and column studies were employed to investigate the ability of phospholipids to reduce AMD over an extended period of time (up to 3 years). In studies that used actual coal mining refuse, which contained significant amount of pyrite, it was shown that the rate of acid production from pyrite decomposition could be reduced by as much as 70% due to the presence of surface bound phospholipid. Assembly of the phospholipid into a bilayer motif on the sulfide surface was hypothesized to form a hydrophobic barrier that kept dissolved O2 and bacteria from facilitating the oxidation of FeS2. Column experiments showed that when water at pH 7 was flowed over the coal mining waste, the effluent had a pH close to 3. In contrast when water at pH 7 was flowed over the pyrite containing waste, which was pretreated with lipid, the effluent had a pH closer to 7, and the total amount of Fe (Fe2+/Fe3+) and SO42- in the effluent waters was also reduced relative to the untreated pyrite containing waste circumstance. These studies showed that the application of phospholipid to pyrite containing coal mining waste could potentially be an environmentally friendly remediation technique. / Chemistry
|
198 |
Interaction of Acid/Base Probe Molecules with Specific Features on Well-Defined Metal Oxide Single-Crystal SurfacesAbee, Mark Winfield 24 September 2001 (has links)
Acid/Base characterizations of metal oxide surfaces are often used to explain their catalytic behavior. However, the vast majority of these studies have been performed on powders or supported oxides, and there is very little information available in the literature on the interaction of acid/base probe molecules with well-defined oxide surfaces of known coordination geometry and oxidation state. The well-defined, single crystal surfaces of Cu₂O (111), SnO₂ (110), and Cr₂O₃ (101̲2) were investigated for their acid/base properties by the interactions between the probe molecules and the well-defined surface features. The adsorption of NH₃ at cation sites was used to characterize the Lewis acidity of SnO₂ (110) and Cu₂O (111) surfaces. The adsorption of CO₂, a standard acidic probe molecule, was used to characterize the Lewis basicity of the oxygen anions on SnO₂ (110), Cu₂O (111) , and Cr₂O₃ (101̲2) surfaces. BF₃, while not a standard probe molecule, has been tested as a probe of the Lewis basicity of the oxygen anions on SnO₂ (110) and Cr₂O₃ (101̲2).
By studying probe molecules on well-defined metal oxide surfaces with known coordination geometry and oxidation state, an overall evaluation of NH₃, CO₂, and BF₃ as probe molecules can be made using the surfaces studied. NH₃ probed differences in Lewis acidity of Sn cations on SnO₂ (110), which had differences in coordination environments and oxidation states. But, NH₃ adsorption failed to provide any direct information on differences in Lewis acidity of Cu cations in different local coordination geometries on Cu₂O (111). CO₂ is a poor probe of the Lewis basicity of oxygen anions on the metal oxide surfaces studied here. CO₂ does not strongly adsorb to either SnO₂ (110) or Cu₂O (111). On Cr₂O₃ (101̲2), CO₂ does interact with oxygen sites but in two different coordinations, which vary with surface condition, making a comparison of basicity difficult. In the cases studied here, CO₂ either does not adsorb, or it does not provide a clear set of results that can be related simply to Lewis basicity. BF₃ seems to be a much better probe of the Lewis basicity than CO₂ for the well-defined metal oxide surfaces studied here. On SnO₂ (110) and Cr₂O₃ (101̲2), the boron atom of BF₃ directly interacts with oxygen sites by accepting their electrons. BF₃ thermal desorption seems to provide a direct measure of the Lewis basicity of different surface oxygen species as long as they are thermally-stable in vacuum. / Ph. D.
|
199 |
<b>CHARACTERIZATION OF NANOCLUSTERS THROUGH ION SOFT LANDING, ION MOBILITY, AND COLLISION-INDUCED DISSOCIATION</b>Solita Marie Wilson (19200967) 23 July 2024 (has links)
<p dir="ltr">The field of nanoclusters includes a broad range of sizes and structures that influence both their physical and chemical properties. Scientists use several techniques, such as atom-by-atom substitution, to synthesize atomically precise nanoclusters, and ligand shell mixing to protect nanoclusters from unwanted side reactions, while controlling their reactivity and solubility. These combined techniques can provide stable products, but isomers and structural analogs often remain in the product mixture, complicating the structural characterization of individual nanoclusters. Leading structural characterization techniques in nanocluster research are often limited in their ability to examine both the structure of the metal core and ligand shell in sufficient detail. The primary aim of this research is to systematically characterize the structures and chemical properties of several types of transition metal oxide nanoclusters of interest to applications in energy production, catalysis, and magnetic resonance imaging, without requiring purification. Specifically, this work focuses on 1) Polyoxovanadates (POV) with a mixture of methoxy, ethoxy, and ether ligands, 2) Fe- and W-substituted POV alkoxides, and 3) Octanuclear iron oxide clusters substituted with In atoms. Mass spectrometry techniques enable the structural characterization of individual clusters from multicomponent mixtures without interference. Specifically, we use ion mobility spectrometry to explore how surface ligands affect the metal core in mixed-ligand POV alkoxide species. We examine structure-specific fragments to identify the positions of ligands and heteroatoms within the metal core of mixed-ligand species and W and Fe-substituted POV methoxides. Additionally, we use ion soft-landing to purify W-substituted POV methoxide anions on surfaces for characterization using cyclic voltammetry and infrared spectroscopy. We discovered unique characteristics of each nanocluster including the position of heteroatoms, ligands shell mobilities, structures and collisional cross sections, and provided first insights into the redox properties of W-substituted POV alkoxide. These results highlight the growing influence of mass spectrometry in the field of nanocluster characterization and design.</p>
|
200 |
Effects of Transition Metal Oxide and Mixed-Network Formers on Structure and Properties of Borosilicate GlassesLu, Xiaonan 12 1900 (has links)
First, the effect of transition metal oxide (e.g., V2O5, Co2O3, etc.) on the physical properties (e.g., density, glass transition temperature (Tg), optical properties and mechanical properties) and chemical durability of a simplified borosilicate nuclear waste glass was investigated. Adding V2O5 in borosilicate nuclear waste glasses decreases the Tg, while increasing the fracture toughness and chemical durability, which benefit the future formulation of nuclear waste glasses. Second, structural study of ZrO2/SiO2 substitution in silicate/borosilicate glasses was systematically conducted by molecular dynamics (MD) simulation and the quantitative structure-property relationships (QSPR) analysis to correlate structural features with measured properties. Third, for bioactive glass formulation, mixed-network former effect of B2O3 and SiO2 on the structure, as well as the physical properties and bioactivity were studied by both experiments and MD simulation. B2O3/SiO2 substitution of 45S5 and 55S5 bioactive glasses increases the glass network connectivity, correlating well with the reduction of bioactivity tested in vitro. Lastly, the effect of optical dopants on the optimum analytical performance on atom probe tomography (APT) analysis of borosilicate glasses was explored. It was found that optical doping could be an effective way to improve data quality for APT analysis with a green laser assisted system, while laser spot size is found to be critical for optimum performance. The combined experimental and simulation approach adopted in this dissertation led to a deeper understanding of complex borosilicate glass structures and structural origins of various properties.
|
Page generated in 0.0328 seconds