Spelling suggestions: "subject:"etallic class"" "subject:"ametallic class""
31 |
Fracture and Deformation in Bulk Metallic Glasses and CompositesNarayan, R Lakshmi January 2014 (has links) (PDF)
Plastic flow in bulk metallic glasses (BMGs) localizes into narrow bands, which, in the absence of a microstructure that could obstruct them, propagate unhindered under tensile loading. In constrained deformation conditions such as indentation and at notch roots, extensive shear band formation can occur. A key issue in the context of fracture of BMGs that is yet to be understood comprehensively is how their toughness is controlled by various state parameters. Towards this end, the change in fracture toughness and plasticity with short term annealing above and below the glass transition temperature, Tg, is studied in a Zr-based BMG. Elastic properties like shear modulus, Poisson's ratio as well as parameters defining the internal state like the fictive temperature, Tf, density, and free volume are measured and correlation with the toughness was attempted at. While the elastic properties may help in distinguishing between tough and brittle glasses, they fail to reveal the reasons behind the toughness variations. Spherical-tip nanoindentation and microindentation tests were employed to probe the size, distributions and activation energies of the microscopic plastic carriers with the former and shear band densities with the latter. Results indicate that specimens annealed at a higher temperature, Ta, exhibit profuse shear banding with negligible changes in the local yield strengths. Statistical analysis of the nanoindentation data by incorporating the nucleation rate theory and the results of the cooperative shear model (CSM), reveals that short term annealing doesn't alter the shear transformation zone (STZ) size much. However, density estimates indicate changes in the free volume content across specimens. A model combining STZ activation and free volume accumulation predicts a higher rate in the reduction of the cumulative STZ activation barrier in specimens with a higher initial free volume content. Of the macroscopic physical properties, the specimen density is revealed to be a useful qualitative measure of enhancement in fracture toughness and plasticity in BMGs.
We turn our attention next to the brittle fracture in BMGs, with the specific objective of understanding the mechanisms of failure. For this purpose, mode I fracture experiments were conducted on embrittled BMG samples and the fracture surface features were analyzed in detail. Wallner lines, which result from the interaction between the propagating crack front and shear waves emanating from a secondary source, were observed on the fracture surface and geometric analysis of them indicates that the maximum crack velocity to be ~800 m/s, which corresponds to ~0.32 times the shear wave speed. Fractography reveals that the sharp crack nucleation at the notch tip occurs at the mid-section of the specimens with the observation of flat and half-penny shaped cracks. On this basis, we conclude that the crack initiation in brittle BMGs occurs through hydrostatic stress assisted cavity nucleation ahead of the notch tip. High magnification scanning electron and atomic force microscopies of the dynamic crack growth regions reveal highly organized, nanoscale periodic patterns with a spacing of ~79 nm. Juxtaposition of the crack velocity with this spacing suggests that that the crack takes ~10-10 s for peak-to-peak propagation. This, and the estimated adiabatic temperature rise ahead of the propagating crack tip that suggests local softening, are utilized to critically discuss possible causes for the nanocorrugation formation. The Taylor’s fluid meniscus instability is unequivocally ruled out. Then, two other possible mechanisms, viz. (a) crack tip blunting and resharpening through nanovoid nucleation and growth ahead of the crack tip and eventual coalescence, and (b) dynamic oscillation of the crack in a thin slab of softened zone ahead of the crack-tip, are critically discussed.
One way of alleviating the fracture-related issues in BMGs is to impart a microstructure to it, which would either impede the growth of shear bands or promote the multiplication of them. One such approach is through the BMG composites (BMGCs) route, wherein a crystalline second phase incorporated in the BMG matrix. There is a need to study the effects of reinforcement content, size and distribution on the mechanical behavior of the BMGC so as to achieve an optimum combination of strength and ductility. For this purpose, an investigation into the microstructure and tensile properties of Zr/Ti-based BMG composites of the same composition, but produced by different routes, was conducted so as to identify “structure–property” connections in these materials. This was accomplished by employing four different processing methods—arc melting, suction casting, semi-solid forging and induction melting on a water-cooled copper boat—on composites with two different dendrite volume fractions, Vd. The change in processing parameters only affects microstructural length scales such as the interdendritic spacing, λ, and dendrite size, δ, whereas compositions of the matrix and dendrite are unaffected. Broadly, the composite’s properties are insensitive to the microstructural length scales when Vd is high (∼75%), whereas they become process dependent for relatively lower Vd (∼55%). Larger δ in arc-melted and forged specimens result in higher ductility (7–9%) and lower hardening rates, whereas smaller dendrites increase the hardening rate. A bimodal distribution of dendrites offers excellent ductility at a marginal cost of yield strength. Finer λ result in marked improvements in both ductility and yield strength, due to the confinement of shear band nucleation sites in smaller volumes of the glassy phase. Forging in the semi-solid state imparts such a microstructure. Read more
|
32 |
Phase formation, thermal stability and mechanical behaviour of TiCu-based alloysGargarella, Piter 24 February 2014 (has links) (PDF)
The large elastic limit, the strength close to the theoretical limit, the excellent magnetic properties and good corrosion resistance of bulk metallic glasses (BMGs) make them promising for several applications such as micro-geared motor parts, pressure sensors, Coriolis flow meters, power inductors and coating materials. The main limitation of these materials is their reduced macroscopic ductility at room temperature, resulting from an inhomogeneous deformation concentrated in narrows shear bands.
The poor ductility can be overcome by the incorporation of a ductile second phase in the glassy matrix to form composites, which exhibit a better balance between strength and ductility. Different types of BMG composites have been developed to date but considerable plastic strain during tensile or bending tests has been only obtained for composites with in-situ formation of the second phase during solidification.
Among these in-situ formed composites, significant tensile ductility has been only observed for two types of alloys so far: TiZrBe-based and CuZr-based BMG composites. The former precipitate dendrites of the cubic β-(Ti,Zr) phase in the glass matrix, whereas the latter combine spherical precipitates of the cubic B2-CuZr shape memory phase within the glass. The CuZr-based BMG composites have certain advantages over the TiZrBe-based composites such as the absence of Be, which is a toxic element, and exhibit a strong work-hardening behaviour linked to the presence of the shape memory phase.
This concept of “shape memory” BMG composites has been only applied to CuZr-based alloys so far. It is worth investigating if such a concept can be also used to enhance the plasticity of other BMGs. Additionally, the correlation between microstructure, phase formation and mechanical properties of these composites is still not fully understood, especially the role of the precipitates regarding shear band multiplication as well as the stress distribution in the glassy matrix, which should be significantly influenced by the precipitates.
The aim of the present work is to develop a new family of shape memory bulk metallic glass composites in order to extend the concept initially developed for CuZr-based alloys. Their thermal and mechanical properties shall be correlated with the microstructure and phase formation in order to gain a deeper understanding of the fundamental deformation mechanisms and thermal behaviour. A candidate to form new shape memory BMG composites is the pseudo-binary TiCu-TiNi system because bulk glassy samples with a critical casting thickness of around 1 mm have been obtained in the compositional region where the cubic shape memory phase, B2-TiNi, precipitates. This phase undergoes a martensitic transformation to the orthorhombic B19-TiNi during cooling at around 325 K. The B2- and B19-TiNi exhibit an extensive deformation at room temperature up to 30% during tensile loading.
Compositions in the Ti-Cu, Ti-Cu-Ni, Ti-Cu-Ni-Zr, Ti-Cu-Ni-Zr-(Si) and Ti-Cu-Ni-Co systems were selected based on literature data and on a recently proposed λ+Δh1/2 criterion, which considers the effect of atomic size mismatch between the elements and their electronic interaction. Samples were then produced by melt spinning (ribbons) and Cu-mould suction casting (rods and plates). The investigation started in the Ti-Cu system. A low glass-forming ability (GFA) was observed with formation of amorphous phase only in micrometer-thick ribbons and the results showed that the best glass former is located around Ti50Cu50. Considering that the GFA of the binary alloys can be further improved with additions of Ni, new Ti-Cu-Ni shape memory BMG composites were then developed in which the orthorhombic Ti(Ni,Cu) martensite precipitates in the glassy matrix. These alloys exhibit a high yield strength combined with large fracture strain and the precipitates show a reversible martensitic transformation from B19 to B2-type structure at a critical temperature around 320 K (during heating).
The amorphous matrix stabilizes the high-temperature phase (B2 phase), which causes different transformation temperatures depending on whether the precipitates are partially or completely embedded in the glassy matrix. The deformation starts in the softer, crystalline phase, which generates a heterogeneous stress distribution in the glassy matrix and causes the formation of multiple shear bands. The precipitates also have the important function to block the fast movement of shear bands and hence retard fracture.
However, the size of such composites is limited to 1 mm diameter rods because of their low GFA, which can be further improved by adding CuZr. New Ti-Cu-Ni-Zr composites with diameter ranging from 2 to 3 mm were developed, which consist mainly of spherical precipitates of the cubic B2-(Ti,Zr)(Cu,Ni) and the glassy phase. The interrelation between composite strength and volume fraction of B2 phase was analysed in detail, which follows the rule of mixture for values lower than 30 vol.% or the load-bearing model for higher values. The fracture strain is also affected by the volume fraction of the respective phases with a maximum observed around 30 vol.% of B2 phase, which agrees with the prediction given by the three-body element model. It was observed that the cubic B2 phase undergoes a martensitic transformation during deformation, resulting in a strong work hardening and a high fracture stress of these alloys.
The GFA of the Ti-Cu -based alloys can be further increased by minor additions of Si. A maximum GFA is observed for additions of 1 and 0.5 at.% Si to binary Ti-Cu or quaternary Ti-Cu-Ni-Zr alloys, respectively. This optimum GFA results from the formation of a lower amount of highly stable Ti5Si3 precipitates, which act as nuclei for other crystalline phases, and the increased stability of the liquid and the supercooled liquid. The addition of Co has the opposite effect. It drastically decreases the GFA of Ti-Cu-Ni alloys and both the martensitic transformation temperature and their mechanical behaviour seem to correlate with the number and concentration of valence electrons of the B2 phase. The transformation temperature decreases by increasing the concentration of valence electrons.
An excellent combination of high yield strength and large fracture strain occurs for Ti-Cu-Ni-Zr and Ti-Cu-Ni-Zr-Si alloys with a relatively low amount of CuZr, with a fracture strain in compression almost two times larger than the one usually observed for CuZr-based composites. For instance, the Ti45Cu39Ni11Zr5 alloy exhibit a yield strength of 1490±50 MPa combined with 23.7±0.5% of plastic strain. However, a reduced ductility was found for the CuZr-richer Ti-Cu-Ni-Zr compositions, which results from the precipitation of the brittle Cu2TiZr phase in the glassy matrix.
The present study extends the concept of “shape memory BMG matrix composites” originally developed for CuZr-based alloys and delivers important insights into the correlation between phase formation and mechanical properties of this new family of high-strength TiCu-based alloys, which upon further optimization might be promising candidates for high-performance applications such as flow meters, sensors and micro- and mm-sized gears. / Auf Grund der hohen Elastizitätsgrenze, Festigkeiten, die nahe an der theoretischen Grenze liegen, sehr guten magnetischen Eigenschaften, sowie einer guten Korrosionsbeständigkeit erscheint der Einsatz massiver metallischer Gläser (BMG) vielversprechend in zahlreichen Gebieten, wie z.B. in Mikro-Getriebemotorteilen, Coriolis-Massendurchflussmessern, Drucksensoren, Speicherdrosseln und als Beschichtungsmaterialien. Der Einsatz dieser Materialien wird jedoch hauptsächlich durch ihre begrenzte makroskopische Duktilität bei Raumtemperatur eingeschränkt. Diese resultiert aus einer inhomogenen Verformung, die in schmalen Scherbändern konzentriert ist.
Die unzureichende Duktilität kann durch das Einbringen einer zweiten, duktilen Phase in die Glas-Matrix verbessert werden, so dass Komposite gebildet werden. Diese Komposite weisen in der Regel immer noch hohe Festigkeiten auf, lassen sich aber gleichzeitig deutlich besser plastisch verformen. Es wurden bereits verschiedene Arten von massiven metallischen Glas-Matrix-Kompositen entwickelt. Jedoch konnte die plastische Verformbarkeit in Zug- oder Biegeversuchen nur in den Materialien erhöht werden, in denen sich die zweite Phase bei der Erstarrung ausscheidet.
Unter diesen in-situ Kompositen konnte eine signifikante Duktilität lediglich für zwei Legierungstypen beobachtet werden: massive metallische Gläser auf TiZrBe- und auf CuZr-Basis. Die Ausscheidungen der kubischen β-(Ti,Zr) Phase wachsen dendritenartig in die Glas-Matrix, wohingegen sich in letzterem Legierungstypen sphärische Ausscheidungen der Formgedächtnislegierung, B2-CuZr, im Glas bilden. CuZr-Basislegierungen haben dabei den großen Vorteil, dass sie kein Be enthalten, welches toxisch ist. Außerdem weisen diese Komposite auch dank der Formgedächtnisphase eine starke Kaltverfestigung auf.
Das Konzept, massive metallische Formgedächtnis-Glas-Matrix-Komposite herzustellen, um die mechanischen Eigenschaften zu optimieren, wurde bisher nur auf CuZr-Basislegierungen angewandt. Es soll mittels dieser Arbeit nun erforscht werden, ob dieses Konzept auf andere massive metallische Gläser übertragbar ist. Des Weiteren ist der Zusammenhang zwischen Gefüge, Phasenbildung und mechanischen Eigenschaften der Komposite noch nicht vollständig verstanden, insbesondere die Rolle der Ausscheidungen in Bezug auf die Scherbandbildung und die Spannungsverteilung in der Glas-Matrix.
Das Ziel der vorliegenden Arbeit ist die Entwicklung einer neuen Klasse massiver, metallischer Formgedächtnis-Glas-Matrix Komposite um das Konzept, welches ursprünglich für CuZr-Basislegierungen entwickelt wurde, zu erweitern. Die thermischen und mechanischen Eigenschaften sollen mit dem Gefüge und der Phasenbildung in Beziehung gesetzt werden, um so die fundamentalen Verformungsmechanismen und ihre Ursachen besser zu verstehen.
Der Ausgangspunkt bei der Herstellung neuer massiver metallischer Formgedächtnis-Glas-Matrix Komposite ist das pseudobinäre TiCu-TiNi-System. In diesem System konnten massive Glasproben mit einem kritischen Gießdurchmesser von circa 1 mm hergestellt werden und zwar in dem Zusammensezungsbereich, in dem die kubische Formgedächtnisphase, B2-TiNi, gebildet wird. Während der Abkühlung findet in diesen Kompositen bei etwa 325 K eine martensitische Umwandlung der B2-Phase zur orthorhombischen B19-TiNi Phase statt. B2- und B19-TiNi weisen eine gute Verformbarkeit von bis zu 30% bei Raumtemperatur unter Zugbelastung auf.
Die hier erzeugten Ti-Cu, Ti-Cu-Ni, Ti-Cu-Ni-Zr, Ti-Cu-Ni-Zr-(Si) und Ti-Cu-Ni-Co-Legierungen basieren auf Literaturangaben und Vorhersagen bezüglich der Glasbildungsfähigkeit in diesen Systemen mittels λ+Δh1/2-Kriterium, welches die Auswirkungen der Atomgrößenunterschiede der Elemente und deren elektronische Wechselwirkung einbezieht. Die Proben wurden im Schmelzspinnverfahren (Bänder) und mittels Saugguss in einer Cu-Kokille (Stäbe und Bleche) hergestellt.
Die Weiter- und Neuentwicklung von Legierungen, beginnt mit dem Ti-Cu-System. Die Glasbildungsfähigkeit in diesem binären System ist nur gering, so dass lediglich mikrometerdicke amorphe Bänder hergestellt werden können. Die Ergebnisse zeigen, dass der beste Glasbildner eine Zusammensetzung von etwa Ti50Cu50 hat. Die Glasbildungsfähigkeit von binären Legierungen kann durch die Zugabe von Ni weiter verbessert werden. Dies führte innerhalb dieser Arbeit zur Entwicklung neuer Ti-Cu-Ni Formgedächtnis-Glas-Matrix Komposite, in welchen die orthorhombische Martensitphase in der Glas-Matrix ausgeschieden wird. Diese ternären Legierungen zeigen eine hohe Zugfestigkeit in Kombination mit einer hohen Bruchdehnung. Beim Überschreiten einer Temperatur von etwa 320 K vollziehen die Ausscheidungen eine reversible martensitische Umwandlung vom B19- zum B2-Strukturtyp.
Durch die amorphe Matrix wird die Hochtemperaturphase (B2 Phase) stabilisiert. Dies verursacht unterschiedliche Umwandlungstemperaturen im Kompositmaterial, die davon abhängig sind, ob die Ausscheidungen nur teilweise oder vollständig in der Matrix eingebettet sind. Die Verformung beginnt in der weichen kristallinen Phase, welche eine heterogene Spannungsverteilung in der Glas-Matrix erzeugt und eine hohe Dichte an Scherbändern in der Matrix verursacht. Die Ausscheidungen haben zudem die Funktion, die Ausbreitung der Scherbänder zu blockieren und das Versagen des Materials zu verzögern.
Die Größe der Komposite ist jedoch auf Grund der geringen Glasbildungsfähigkeit auf einen Stabdurchmesser von ca. 1 mm begrenzt. Dies kann mit dem Zulegieren von CuZr verbessert werden. Es wurden hier auf diese Weise neue Ti-Cu-Ni-Zr Komposite entwickelt, deren Durchmesser zwischen 2 und 3 mm liegt. Diese bestehen hauptsächlich aus sphärischen Ausscheidungen der kubischen B2-(Ti,Zr)(Cu,Ni)- und der Glasphase. Die wechselseitige Beziehung zwischen der Streckgrenze und dem Volumenanteil der B2-Phase wurde im Detail untersucht. Für kristalline Volumenanteile kleiner als 30 Vol.-% folgt die Streckgrenze der Mischungsregel und für größere Volumenanteile dem „lasttragenden Modell“ (load bearing model). Die Bruchdehnung wird ebenfalls vom Volumenanteil der Phasen beeinflusst und zeigt ein Maximum bei etwa 30 Vol.-% an B2-Phase. Dies stimmt mit der Vorhersage des „Drei-Element-Modells“ überein. Es wurde festgestellt dass die kubische B2-Phase während der Verformung eine martensitische Umwandlung durchführt, was die starke Kaltverfestigung und die hohen Bruchspannungen dieser Legierungen zur Folge hat.
Die Glasbildungsfähigkeit von TiCu-Basislegierungen kann im Gegenzug weiterhin durch geringe Si-Zusätze gesteigert werden. Hierbei tritt jeweils ein Maximum bei Zusätzen von 1 und 0,5 at-% Si zu binären Ti-Cu- oder zu quarternären Ti-Cu-Ni-Zr-Legierung auf. Das Optimum der Glasbildungsfähigkeit ist das Ergebnis sowohl eines geringeren Anteils hochschmelzender Ti5Si3-Ausscheidungen, die als Keimbildner für andere kristalline Phasen dienen, als auch der erhöhten Stabilität der Schmelze sowie der unterkühlten Schmelze. Der Zusatz von Co wiederum hat einen gegenteiligen Effekt. Er vermindert die Glasbildungsfähigkeit von Ti-Cu-Ni-Legierungen drastisch. Zudem scheinen sowohl die martensitische Umwandlungstemperatur als auch das mechanische Verhalten mit der Zahl und Konzentration der Valenzelektronen der B2-Phase zu korrelieren. Die Umwandlungstemperatur sinkt mit steigender Valenzelektronenkonzentration.
Eine ausgezeichnete Kombination von hoher Streckgrenze und Bruchdehnung tritt für die Legierungen Ti-Cu-Ni-Zr und Ti-Cu-Ni-Zr-Si mit einem relativ geringen CuZr-Anteil auf. Die Bruchdehnung unter Druck ist fast zweimal höher als es für CuZr-Basis-Komposite gewöhnlich beobachtet worden ist. Die Legierung Ti45Cu39Ni11Zr5 zeigt beispielsweise eine Streckgrenze von 1490±50 MPa in Kombination mit einer plastischen Dehnung von 23,7±0,5%. Für die CuZr-reicheren Ti-Cu-Ni-Zr Zusammensetzungen wurde jedoch eine geringere Duktilität festgestellt, was das Resultat spröder Cu2TiZr-Ausscheidungen in der Glas-Matrix ist.
Die vorliegende Arbeit erweitert folglich das Konzept der „Formgedächtnis-Glas-Matrix Komposite“, welches bisher auf CuZr-basierte Legierungen beschränkt war und liefert wichtige Einblicke in die Beziehung zwischen Phasenbildung und mechanischen Eigenschaften der neuen Klasse hochfester TiCu-Basislegierungen, welche nach weiterer Optimierung vielversprechend sein könnten für Hochleistungsanwendungen wie Durchflussmesser, Sensoren und mikrometer- und mm-große Antriebe. Read more
|
33 |
Phase formation, thermal stability and mechanical behaviour of TiCu-based alloysGargarella, Piter 10 February 2014 (has links)
The large elastic limit, the strength close to the theoretical limit, the excellent magnetic properties and good corrosion resistance of bulk metallic glasses (BMGs) make them promising for several applications such as micro-geared motor parts, pressure sensors, Coriolis flow meters, power inductors and coating materials. The main limitation of these materials is their reduced macroscopic ductility at room temperature, resulting from an inhomogeneous deformation concentrated in narrows shear bands.
The poor ductility can be overcome by the incorporation of a ductile second phase in the glassy matrix to form composites, which exhibit a better balance between strength and ductility. Different types of BMG composites have been developed to date but considerable plastic strain during tensile or bending tests has been only obtained for composites with in-situ formation of the second phase during solidification.
Among these in-situ formed composites, significant tensile ductility has been only observed for two types of alloys so far: TiZrBe-based and CuZr-based BMG composites. The former precipitate dendrites of the cubic β-(Ti,Zr) phase in the glass matrix, whereas the latter combine spherical precipitates of the cubic B2-CuZr shape memory phase within the glass. The CuZr-based BMG composites have certain advantages over the TiZrBe-based composites such as the absence of Be, which is a toxic element, and exhibit a strong work-hardening behaviour linked to the presence of the shape memory phase.
This concept of “shape memory” BMG composites has been only applied to CuZr-based alloys so far. It is worth investigating if such a concept can be also used to enhance the plasticity of other BMGs. Additionally, the correlation between microstructure, phase formation and mechanical properties of these composites is still not fully understood, especially the role of the precipitates regarding shear band multiplication as well as the stress distribution in the glassy matrix, which should be significantly influenced by the precipitates.
The aim of the present work is to develop a new family of shape memory bulk metallic glass composites in order to extend the concept initially developed for CuZr-based alloys. Their thermal and mechanical properties shall be correlated with the microstructure and phase formation in order to gain a deeper understanding of the fundamental deformation mechanisms and thermal behaviour. A candidate to form new shape memory BMG composites is the pseudo-binary TiCu-TiNi system because bulk glassy samples with a critical casting thickness of around 1 mm have been obtained in the compositional region where the cubic shape memory phase, B2-TiNi, precipitates. This phase undergoes a martensitic transformation to the orthorhombic B19-TiNi during cooling at around 325 K. The B2- and B19-TiNi exhibit an extensive deformation at room temperature up to 30% during tensile loading.
Compositions in the Ti-Cu, Ti-Cu-Ni, Ti-Cu-Ni-Zr, Ti-Cu-Ni-Zr-(Si) and Ti-Cu-Ni-Co systems were selected based on literature data and on a recently proposed λ+Δh1/2 criterion, which considers the effect of atomic size mismatch between the elements and their electronic interaction. Samples were then produced by melt spinning (ribbons) and Cu-mould suction casting (rods and plates). The investigation started in the Ti-Cu system. A low glass-forming ability (GFA) was observed with formation of amorphous phase only in micrometer-thick ribbons and the results showed that the best glass former is located around Ti50Cu50. Considering that the GFA of the binary alloys can be further improved with additions of Ni, new Ti-Cu-Ni shape memory BMG composites were then developed in which the orthorhombic Ti(Ni,Cu) martensite precipitates in the glassy matrix. These alloys exhibit a high yield strength combined with large fracture strain and the precipitates show a reversible martensitic transformation from B19 to B2-type structure at a critical temperature around 320 K (during heating).
The amorphous matrix stabilizes the high-temperature phase (B2 phase), which causes different transformation temperatures depending on whether the precipitates are partially or completely embedded in the glassy matrix. The deformation starts in the softer, crystalline phase, which generates a heterogeneous stress distribution in the glassy matrix and causes the formation of multiple shear bands. The precipitates also have the important function to block the fast movement of shear bands and hence retard fracture.
However, the size of such composites is limited to 1 mm diameter rods because of their low GFA, which can be further improved by adding CuZr. New Ti-Cu-Ni-Zr composites with diameter ranging from 2 to 3 mm were developed, which consist mainly of spherical precipitates of the cubic B2-(Ti,Zr)(Cu,Ni) and the glassy phase. The interrelation between composite strength and volume fraction of B2 phase was analysed in detail, which follows the rule of mixture for values lower than 30 vol.% or the load-bearing model for higher values. The fracture strain is also affected by the volume fraction of the respective phases with a maximum observed around 30 vol.% of B2 phase, which agrees with the prediction given by the three-body element model. It was observed that the cubic B2 phase undergoes a martensitic transformation during deformation, resulting in a strong work hardening and a high fracture stress of these alloys.
The GFA of the Ti-Cu -based alloys can be further increased by minor additions of Si. A maximum GFA is observed for additions of 1 and 0.5 at.% Si to binary Ti-Cu or quaternary Ti-Cu-Ni-Zr alloys, respectively. This optimum GFA results from the formation of a lower amount of highly stable Ti5Si3 precipitates, which act as nuclei for other crystalline phases, and the increased stability of the liquid and the supercooled liquid. The addition of Co has the opposite effect. It drastically decreases the GFA of Ti-Cu-Ni alloys and both the martensitic transformation temperature and their mechanical behaviour seem to correlate with the number and concentration of valence electrons of the B2 phase. The transformation temperature decreases by increasing the concentration of valence electrons.
An excellent combination of high yield strength and large fracture strain occurs for Ti-Cu-Ni-Zr and Ti-Cu-Ni-Zr-Si alloys with a relatively low amount of CuZr, with a fracture strain in compression almost two times larger than the one usually observed for CuZr-based composites. For instance, the Ti45Cu39Ni11Zr5 alloy exhibit a yield strength of 1490±50 MPa combined with 23.7±0.5% of plastic strain. However, a reduced ductility was found for the CuZr-richer Ti-Cu-Ni-Zr compositions, which results from the precipitation of the brittle Cu2TiZr phase in the glassy matrix.
The present study extends the concept of “shape memory BMG matrix composites” originally developed for CuZr-based alloys and delivers important insights into the correlation between phase formation and mechanical properties of this new family of high-strength TiCu-based alloys, which upon further optimization might be promising candidates for high-performance applications such as flow meters, sensors and micro- and mm-sized gears. / Auf Grund der hohen Elastizitätsgrenze, Festigkeiten, die nahe an der theoretischen Grenze liegen, sehr guten magnetischen Eigenschaften, sowie einer guten Korrosionsbeständigkeit erscheint der Einsatz massiver metallischer Gläser (BMG) vielversprechend in zahlreichen Gebieten, wie z.B. in Mikro-Getriebemotorteilen, Coriolis-Massendurchflussmessern, Drucksensoren, Speicherdrosseln und als Beschichtungsmaterialien. Der Einsatz dieser Materialien wird jedoch hauptsächlich durch ihre begrenzte makroskopische Duktilität bei Raumtemperatur eingeschränkt. Diese resultiert aus einer inhomogenen Verformung, die in schmalen Scherbändern konzentriert ist.
Die unzureichende Duktilität kann durch das Einbringen einer zweiten, duktilen Phase in die Glas-Matrix verbessert werden, so dass Komposite gebildet werden. Diese Komposite weisen in der Regel immer noch hohe Festigkeiten auf, lassen sich aber gleichzeitig deutlich besser plastisch verformen. Es wurden bereits verschiedene Arten von massiven metallischen Glas-Matrix-Kompositen entwickelt. Jedoch konnte die plastische Verformbarkeit in Zug- oder Biegeversuchen nur in den Materialien erhöht werden, in denen sich die zweite Phase bei der Erstarrung ausscheidet.
Unter diesen in-situ Kompositen konnte eine signifikante Duktilität lediglich für zwei Legierungstypen beobachtet werden: massive metallische Gläser auf TiZrBe- und auf CuZr-Basis. Die Ausscheidungen der kubischen β-(Ti,Zr) Phase wachsen dendritenartig in die Glas-Matrix, wohingegen sich in letzterem Legierungstypen sphärische Ausscheidungen der Formgedächtnislegierung, B2-CuZr, im Glas bilden. CuZr-Basislegierungen haben dabei den großen Vorteil, dass sie kein Be enthalten, welches toxisch ist. Außerdem weisen diese Komposite auch dank der Formgedächtnisphase eine starke Kaltverfestigung auf.
Das Konzept, massive metallische Formgedächtnis-Glas-Matrix-Komposite herzustellen, um die mechanischen Eigenschaften zu optimieren, wurde bisher nur auf CuZr-Basislegierungen angewandt. Es soll mittels dieser Arbeit nun erforscht werden, ob dieses Konzept auf andere massive metallische Gläser übertragbar ist. Des Weiteren ist der Zusammenhang zwischen Gefüge, Phasenbildung und mechanischen Eigenschaften der Komposite noch nicht vollständig verstanden, insbesondere die Rolle der Ausscheidungen in Bezug auf die Scherbandbildung und die Spannungsverteilung in der Glas-Matrix.
Das Ziel der vorliegenden Arbeit ist die Entwicklung einer neuen Klasse massiver, metallischer Formgedächtnis-Glas-Matrix Komposite um das Konzept, welches ursprünglich für CuZr-Basislegierungen entwickelt wurde, zu erweitern. Die thermischen und mechanischen Eigenschaften sollen mit dem Gefüge und der Phasenbildung in Beziehung gesetzt werden, um so die fundamentalen Verformungsmechanismen und ihre Ursachen besser zu verstehen.
Der Ausgangspunkt bei der Herstellung neuer massiver metallischer Formgedächtnis-Glas-Matrix Komposite ist das pseudobinäre TiCu-TiNi-System. In diesem System konnten massive Glasproben mit einem kritischen Gießdurchmesser von circa 1 mm hergestellt werden und zwar in dem Zusammensezungsbereich, in dem die kubische Formgedächtnisphase, B2-TiNi, gebildet wird. Während der Abkühlung findet in diesen Kompositen bei etwa 325 K eine martensitische Umwandlung der B2-Phase zur orthorhombischen B19-TiNi Phase statt. B2- und B19-TiNi weisen eine gute Verformbarkeit von bis zu 30% bei Raumtemperatur unter Zugbelastung auf.
Die hier erzeugten Ti-Cu, Ti-Cu-Ni, Ti-Cu-Ni-Zr, Ti-Cu-Ni-Zr-(Si) und Ti-Cu-Ni-Co-Legierungen basieren auf Literaturangaben und Vorhersagen bezüglich der Glasbildungsfähigkeit in diesen Systemen mittels λ+Δh1/2-Kriterium, welches die Auswirkungen der Atomgrößenunterschiede der Elemente und deren elektronische Wechselwirkung einbezieht. Die Proben wurden im Schmelzspinnverfahren (Bänder) und mittels Saugguss in einer Cu-Kokille (Stäbe und Bleche) hergestellt.
Die Weiter- und Neuentwicklung von Legierungen, beginnt mit dem Ti-Cu-System. Die Glasbildungsfähigkeit in diesem binären System ist nur gering, so dass lediglich mikrometerdicke amorphe Bänder hergestellt werden können. Die Ergebnisse zeigen, dass der beste Glasbildner eine Zusammensetzung von etwa Ti50Cu50 hat. Die Glasbildungsfähigkeit von binären Legierungen kann durch die Zugabe von Ni weiter verbessert werden. Dies führte innerhalb dieser Arbeit zur Entwicklung neuer Ti-Cu-Ni Formgedächtnis-Glas-Matrix Komposite, in welchen die orthorhombische Martensitphase in der Glas-Matrix ausgeschieden wird. Diese ternären Legierungen zeigen eine hohe Zugfestigkeit in Kombination mit einer hohen Bruchdehnung. Beim Überschreiten einer Temperatur von etwa 320 K vollziehen die Ausscheidungen eine reversible martensitische Umwandlung vom B19- zum B2-Strukturtyp.
Durch die amorphe Matrix wird die Hochtemperaturphase (B2 Phase) stabilisiert. Dies verursacht unterschiedliche Umwandlungstemperaturen im Kompositmaterial, die davon abhängig sind, ob die Ausscheidungen nur teilweise oder vollständig in der Matrix eingebettet sind. Die Verformung beginnt in der weichen kristallinen Phase, welche eine heterogene Spannungsverteilung in der Glas-Matrix erzeugt und eine hohe Dichte an Scherbändern in der Matrix verursacht. Die Ausscheidungen haben zudem die Funktion, die Ausbreitung der Scherbänder zu blockieren und das Versagen des Materials zu verzögern.
Die Größe der Komposite ist jedoch auf Grund der geringen Glasbildungsfähigkeit auf einen Stabdurchmesser von ca. 1 mm begrenzt. Dies kann mit dem Zulegieren von CuZr verbessert werden. Es wurden hier auf diese Weise neue Ti-Cu-Ni-Zr Komposite entwickelt, deren Durchmesser zwischen 2 und 3 mm liegt. Diese bestehen hauptsächlich aus sphärischen Ausscheidungen der kubischen B2-(Ti,Zr)(Cu,Ni)- und der Glasphase. Die wechselseitige Beziehung zwischen der Streckgrenze und dem Volumenanteil der B2-Phase wurde im Detail untersucht. Für kristalline Volumenanteile kleiner als 30 Vol.-% folgt die Streckgrenze der Mischungsregel und für größere Volumenanteile dem „lasttragenden Modell“ (load bearing model). Die Bruchdehnung wird ebenfalls vom Volumenanteil der Phasen beeinflusst und zeigt ein Maximum bei etwa 30 Vol.-% an B2-Phase. Dies stimmt mit der Vorhersage des „Drei-Element-Modells“ überein. Es wurde festgestellt dass die kubische B2-Phase während der Verformung eine martensitische Umwandlung durchführt, was die starke Kaltverfestigung und die hohen Bruchspannungen dieser Legierungen zur Folge hat.
Die Glasbildungsfähigkeit von TiCu-Basislegierungen kann im Gegenzug weiterhin durch geringe Si-Zusätze gesteigert werden. Hierbei tritt jeweils ein Maximum bei Zusätzen von 1 und 0,5 at-% Si zu binären Ti-Cu- oder zu quarternären Ti-Cu-Ni-Zr-Legierung auf. Das Optimum der Glasbildungsfähigkeit ist das Ergebnis sowohl eines geringeren Anteils hochschmelzender Ti5Si3-Ausscheidungen, die als Keimbildner für andere kristalline Phasen dienen, als auch der erhöhten Stabilität der Schmelze sowie der unterkühlten Schmelze. Der Zusatz von Co wiederum hat einen gegenteiligen Effekt. Er vermindert die Glasbildungsfähigkeit von Ti-Cu-Ni-Legierungen drastisch. Zudem scheinen sowohl die martensitische Umwandlungstemperatur als auch das mechanische Verhalten mit der Zahl und Konzentration der Valenzelektronen der B2-Phase zu korrelieren. Die Umwandlungstemperatur sinkt mit steigender Valenzelektronenkonzentration.
Eine ausgezeichnete Kombination von hoher Streckgrenze und Bruchdehnung tritt für die Legierungen Ti-Cu-Ni-Zr und Ti-Cu-Ni-Zr-Si mit einem relativ geringen CuZr-Anteil auf. Die Bruchdehnung unter Druck ist fast zweimal höher als es für CuZr-Basis-Komposite gewöhnlich beobachtet worden ist. Die Legierung Ti45Cu39Ni11Zr5 zeigt beispielsweise eine Streckgrenze von 1490±50 MPa in Kombination mit einer plastischen Dehnung von 23,7±0,5%. Für die CuZr-reicheren Ti-Cu-Ni-Zr Zusammensetzungen wurde jedoch eine geringere Duktilität festgestellt, was das Resultat spröder Cu2TiZr-Ausscheidungen in der Glas-Matrix ist.
Die vorliegende Arbeit erweitert folglich das Konzept der „Formgedächtnis-Glas-Matrix Komposite“, welches bisher auf CuZr-basierte Legierungen beschränkt war und liefert wichtige Einblicke in die Beziehung zwischen Phasenbildung und mechanischen Eigenschaften der neuen Klasse hochfester TiCu-Basislegierungen, welche nach weiterer Optimierung vielversprechend sein könnten für Hochleistungsanwendungen wie Durchflussmesser, Sensoren und mikrometer- und mm-große Antriebe. Read more
|
34 |
Elucidating the Mechanisms of Rate-Dependent Deformation at Ambient Temperatures in a Model Metallic GlassHarris, Matthew Bradley 01 December 2015 (has links)
In this work, the Shear Transformation Zone (STZ) dynamics model is adapted to capture the transitions between different regimes of flow serration in the deformation map of metallic glass. This was accomplished by scaling the STZ volume with a log-linear fit to the strain rate, and also adjusting the activation energy of an STZ with a log-linear fit to maintain constant yield strength at differing strain rates. Twelve simulations are run at each of six different strain rates ranging from 10-5 to 100 s-1, and statistics are collected on simulation behavior and shear band nucleation and propagation rates. The simulations show shear band nucleation has a positive correlation to strain rate, and shear band propagation has a negative correlation to strain rate. This shows that in STZ dynamics, the regime of reduced flow serration arises due to competing rates of nucleation and propagation, supporting the hypothesis proposed by Schuh. A positive correlation between critical shear band nucleus size and strain rate is proposed as an underlying cause of these rate dependencies.
|
35 |
Amorphous Metallic Glass as New High Power and Energy Density Anodes For Lithium Ion Rechargeable BatteriesMeng, Shirley Y., Li, Yi, Arroyo, Elena M., Ceder, Gerbrand 01 1900 (has links)
We have investigated the use of aluminum based amorphous metallic glass as the anode in lithium ion rechargeable batteries. Amorphous metallic glasses have no long-range ordered microstructure; the atoms are less closely packed compared to the crystalline alloys of the same compositions; they usually have higher ionic conductivity than crystalline materials, which make rapid lithium diffusion possible. Many metallic systems have higher theoretical capacity for lithium than graphite/carbon; in addition irreversible capacity loss can be avoided in metallic systems. With careful processing, we are able to obtain nano-crystalline phases dispersed in the amorphous metallic glass matrix. These crystalline regions may form the active centers with which lithium reacts. The surrounding matrix can respond very well to the volume changes as these nano-size regions take up lithium. A comparison study of various kinds of anode materials for lithium rechargeable batteries is carried out. / Singapore-MIT Alliance (SMA)
|
36 |
Study Of Mechanical Behaviors and Structures of Bulk Metallic Glasses with High-energy Synchrotron X-Ray DiffractionJiang, Feng 01 August 2011 (has links)
This dissertation addresses two critical issues in the mechanical behaviors and structures of bulk-metallic glasses (BMGs): (1) the effect of composition, fabrication method, and pretreatment of plastic deformation on mechanical properties and structures of BMGs; (2) the mechanical response and structural evolution of BMGs in the elastic and plastic region.
(Cu50Zr50)94Al6 and (Cu50Zr50)92Al8 amorphous alloys were used to study the effect of composition on mechanical properties and structures of BMGs. The (Cu50Zr50)94Al6 alloy exhibits lower yield stress and Young’s modulus, higher Poisson’s ratio, worse thermal stability, and better plasticity than (Cu50Zr50)92Al8. Both the topological and chemical effects of Al addition account for the differences of mechanical and physical properties between them.
A Zr55Ni5Al10Cu30 glass-forming alloy with injection casting (the melting temperatures are 1,550 K and 1,250 K, respectively) and with suction casting was fabricated. The results indicate that despite their amorphous structures, the suction-casting samples exhibit a lower yield stress, lower Young’s modulus, and larger plastic strain than the injection-casting samples (the melting temperature is 1,550 K) due to more quenched-in free volumes in suction casting, which results from the higher cooling rate.
The inhomogeneous plastic deformation in Zr50Cu40Al10 BMG samples was introduced by four-point-bend fatigue. There is almost no difference of the stress-strain behaviors between the deformed and undeformed samples. Elastostatic compression was used to introduce homogeneous deformation in Zr70Cu6Ni16Al8 BMG samples. The preloaded samples are softer with decreases of yield strength and Young’s moduli. Anisotropy was observed in the preloaded samples despite their small magnitudes, which even occurred at a relatively low temperature and applied stress level.
The structural evolution of Zr70Cu6Ni16Al8 BMG in the elastic region was analyzed with anisotropic pair density function. The analysis of the first shell of Zr70Cu6Ni16Al8 glass confirms the structural changes in the elastic region. The bond reorientation leads to direction dependent changes in the chemical short-range order. The structural evolution in the plastic region of Zr70Cu6Ni16Al8 BMG is investigated as well. The serrations were observed for both the stress-displacement and full width at half maximum-displacement curves. The excess free volume was measured, which increases with increasing the displacement. Read more
|
37 |
Glass Forming Ability and Relaxation Behavior of Zr Based Metallic GlassesKamath, Aravind Miyar 2011 May 1900 (has links)
Metallic glasses can be considered for many commercial applications because of the higher mechanical strength, corrosion and wear resistance when compared to crystalline materials. To consider them for novel applications, the challenge of preparing metallic glasses from the liquid melt phase and how the properties of metallic glasses change due to relaxation need to be understood better. The glass forming ability (GFA) with variation in composition and inclusion of different alloying elements was studied by using thermal techniques to determine important GFA indicators for Zr-based bulk metallic glasses (BMG). The effect of alloying elements, annealing temperature and annealing time on the thermal and structural relaxation of the BMGs was studied by using an annealing induced relaxation approach. The thermal relaxation was studied by measuring specific heat of the samples using differential scanning calorimeter (DSC) and calculating the enthalpy recovery on reheating in the BMG samples. The structural relaxation was also studied by using extended X-ray absorption fine structure (EXAFS) technique on the as-obtained and relaxed samples. The effects of alloying elements and annealing on electrical resistance were studied by using a two point probe.
From the study, it was found that the currently used GFA indicators are inadequate to fully capture and identify the best GFA BMGs. The fragility (beta) of the melt is a new criterion that has been proposed to measure and analyze GFA. The enthalpy relaxation of Zrbased BMGs was found to follow a stretched exponential function, and the parameters obtained showed the BMGs used in the current study are strong glass formers. EXAFS studies showed variations in the structure of BMGs with changes in alloying elements. Furthermore, alloying elements were found to have an effect on the structure of the relaxed BMGs. The resistance of BMGs was found to decrease with relaxation which can be attributed to short range order on annealing. Read more
|
38 |
Glass Forming Ability and Mechanical Properties of Mg-Cu-Ag-Gd Bulk Metallic GlassesChen, Hai-ming 27 July 2006 (has links)
The thermal and mechanical properties of the Mg-based bulk metallic glasses are reported in this thesis. The original ingots were prepared by arc melting and induction melting. The thermal and mechanical properties of the Mg-based bulk metallic glasses are reported in this thesis. The original ingots were prepared by arc melting and induction melting. The Mg65Cu25Gd10 and Mg65Cu15Ag10Gd10 bulk metallic glasses with different diameters from 3 to 6 mm were successfully fabricated by conventional copper mold casting in an inert atmosphere.
The Mg65Cu25Gd10 bulk metallic glass shows the high glass forming ability and good thermal stability. However, the addition of Ag in the Mg65Cu15Ag10Gd10 alloy degrades the thermal stability. Based on the DSC results, the supercooled liquid region
|
39 |
Fabrication of amorphous metal matrix composites by severe plastic deformationMathaudhu, Suveen Nigel 30 October 2006 (has links)
Bulk metallic glasses (BMGs) have displayed impressive mechanical properties, but
the use and dimensions of material have been limited due to critical cooling rate
requirements and low ductility. The application of severe plastic deformation by equal
channel angular extrusion (ECAE) for consolidation of bulk amorphous metals (BAM)
and amorphous metal matrix composites (AMMC) is investigated in this dissertation.
The objectives of this research are a) to better understand processing parameters which
promote bonding between particles and b) to determine by what mechanisms the
plasticity is enhanced in bulk amorphous metal matrix composites consolidated by
ECAE.
To accomplish the objectives BAM and AMMCs were produced via ECAE
consolidation of Vitreloy 106a (Zr58.5Nb2.8Cu15.6Ni12.8Al10.3-wt%), ARLloy #1
(Hf71.3Cu16.2Ni7.6Ti2.2Al2.6 -wt%), and both of these amorphous alloys blended with
crystalline phases of W, Cu and Ni. Novel instrumented extrusions and a host of postprocessing
material characterizations were used to evaluate processing conditions and
material properties. The results show that ECAE consolidation at temperatures within the supercooled liquid region gives near fully dense (>99%) and well bonded millimeter
scale BAM and AMMCs. The mechanical properties of the ECAE processed BMG are
comparable to cast material: ÃÂf = 1640 MPa, õf = 2.3%, E = 80 GPa for consolidated
Vitreloy 106a as compared to ÃÂf = 1800 MPa, õf = 2.5%, E = 85 GPa for cast Vitreloy
106, and ÃÂf = 1660 MPa, õf = 2.0%, E = 97 GPa for ARLloy #1 as compared to ÃÂf = 2150
MPa, õf < 2.5%, E = 102 GPa for Hf52Cu17.9Ni14.6Ti5Al10. The mechanical properties of
AMMCs are substandard compared to those obtained from melt-infiltrated composites
due to non-ideal particle bonding conditions such as surface oxides and crystalline phase
morphology and chemistry. It is demonstrated that the addition of a dispersed crystalline
phase to an amorphous matrix by ECAE powder consolidation increases the plasticity of
the amorphous matrix by providing locations for generation and/or arrest of adiabatic
shear bands. The ability of ECAE to consolidated BAM and AMMCs with improved
plasticity opens the possibility of overcoming the size and plasticity limitations of the
monolithic bulk metallic glasses. Read more
|
40 |
Study on the thermomechanical properties and workability of Mg-based bulk metallic glassesChang, Yu-Chen 10 July 2008 (has links)
In the near couple years, the applications of amorphous alloys have attracted great attention due to their characteristics and future potential. This research is intended to synthesis a lighter Mg-based amorphous alloy as the imprinting materials for micro-electromechanical system (MEMS) with a high glass forming ability (GFA) and lower glass transition temperature (Tg). Also, the workability of the Mg-based metallic glasses is examined in terms of several viscous flow behaviors and parameters obtained from the thermomechanical analysis (TMA).
The lighter Mg-based metallic glasses exhibit their superior glass forming ability, and can be cast into bulk metallic glasses (BMGs). Based on the thermal analysis of the Mg-Cu-Y glassy materials, the evaluation of the glass forming ability and thermal stability for searching the optimum alloy composition is conducted. By using Mg58Cu31Y11 amorphous alloy with the best composition as the micro-forming specimens, imprinting was made by hot pressing at 150oC with several applied compressive stresses to form the hexagonal micro-lens arrays. Finite element simulation using 3D Deform software is also applied to trace the microforming evolution, and to compare with the experimental observations. The results demonstrate that the imprinting is feasible and promising.
On the other hand, the Mg-Cu-Gd BMGs with even better GFA than Mg-Cu-Y are explored in terms of their thermomechanical properties. Extension of this study is performed partially by Cu replacing by Ag or B for the improvement of maximum diameter and thermal stability. And the workability of these Mg-Cu-(Ag, B)-Gd metallic glasses, namely, Mg65Cu25-xAgxGd10 (x = 0, 3, 10 at %) and Mg65Cu22B3Gd10 is evaluated in terming of the thermomechanical parameters, viscous flow behavior, deformability, and the deformation model. It is found the fragility for viscous deformation would increase with the replacement of Ag or B, leading to the negative factors for the micro-forming and nano-imprinting practices. This conclusion is supported by the many extracted parameters.
Thus, even the B-additive Mg based BMG has much higher hardness and Ag-additive Mg based BMG has the larger maximum rod diameter, they are more difficult to be formed, appearing as a negative factor in the micro-forming or nano-imprinting industry. The base Mg65Cu25Gd10 alloy stilly appears to be more promising than the Ag or B-containing alloys when the viscous forming is under consideration. Read more
|
Page generated in 0.0567 seconds