• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High Temperature Deformation Behavior of in-situ Bulk Metallic Glass Matrix Composites

Fu, X.L., Li, Yi, Schuh, C.A. 01 1900 (has links)
Macroscopic ductility is promoted in bulk metallic glasses by both composite reinforcements (at low temperatures) and by the activation of viscous flow mechanisms (at high temperatures). It is of fundamental interest to understand deformation physics when both of these strategies are employed at the same time. Despite the quickly growing literature around the room-temperature mechanical properties of metallic glass matrix composites (MGMCs), the deformation behavior of MGMCs over a wide range of temperatures and strain rates has yet to be systematically investigated, especially at high temperatures close to Tg. Here the high temperature compressive behavior of Zr-based MGMCs with in-situ reinforcements is explored systematically over a series of strain rates. Additionally, the volume fraction of second-phase reinforcements was tailored to explore its effect on both inhomogeneous and homogeneous deformation modes. / Singapore-MIT Alliance (SMA)
2

In situ studies of phase transitions in rapidly annealed metallic glasses and properties of obtained composites using ultrafast experimental techniques

Han, Xiaoliang 11 January 2024 (has links)
Metallic glasses (MGs) are very attractive for structural applications due to their large elastic strain, high strength and hardness, resulting from their unique atomic structure. However, MGs are brittle. Preparing metallic glass–crystal composites (MGCCs) from parent glass through thermal treatment is a useful method to induce ductility and work hardening. Thus, besides the direct applications of as-prepared MGs, the glasses can be used as a starting material to be processed, for example, by thermoplastic forming or thermal treatment to design components with desired shape and/or properties. In this view, it is of high importance to know the phase- transformation mechanisms and kinetics upon heating MGs, especially for rapid heating, which has not been sufficiently studied yet. CuZrAl-based alloys, with near CuZr equimolar compositions, are suitable for producing MGCCs with improved plasticity owing to their good glass-forming ability and the formation of ductile B2 CuZr phase upon crystallization. However, the crystallization mechanism(s) and products have mainly been elucidated by extrapolating the available knowledge of the binary CuZr system. In the present work, a set of complementary techniques including resistive (Joule) heating, in situ high-energy synchrotron X-ray diffraction, conventional and ultrafast differential scanning calorimetry and containerless solidification during electromagnetic levitation is used to map the phase evolution ― crystallization and solid-state phase transformations ― in Cu₄₇.₅Zr₄₇.₅Al₅, Cu₄₇.₅Zr₄₈Al₄Co₀.₅ and Cu₄₆.₅Zr₄₈Al₄Nb₁.₅ MGs during isokinetic and isothermal annealing. The resistive heating devices, custom-built at the Leibniz Institute for Solid State and Materials Research Dresden – IFW Dresden, enable heating rates Φ to range from 10¹ up to 10⁵ K s⁻¹ in a vacuum. Using the obtained experimental data, continuous-heating-transformation (CHT) diagrams for a heating rate range exceeding six orders of magnitude, covering the entire supercooled liquid region, and time-temperature-transformation (TTT) diagrams are constructed. The transformation maps reveal the competition between the Cu₁₀Zr₇, B2 CuZr and τ4 (Cu₂ZrAl) phases during crystallization. The formation of the primary phase and transformation sequence depends on the MG composition as well as on the heating rate. The critical heating rate to bypass the crystallization increases from ~30 000 K s⁻¹ for Cu₄₇.₅Zr₄₇.₅Al₅ MG to ~40 000 K s⁻¹ for Cu₄₆.₅Zr₄₈Al₄Nb₁.₅ MG and to ~90 000 K s⁻¹ for Cu₄₇.₅Zr₄₈Al₄Co₀.₅ MG, reflecting their glass-forming ability. The optimum heating rate to obtain glass–crystal composites with the predominant and desired B2 CuZr phase is evaluated to be Φ > 1 000 K s⁻¹ for Cu₄₇.₅Zr₄₇.₅Al₅ MG, Φ > 1 500 K s⁻¹ for Cu₄₇.₅Zr₄₈Al₄Co₀.₅ MG, and Φ > 4 000 K s⁻¹ for Cu₄₆.₅Zr₄₈Al₄Nb₁.₅ MG. Cu₄₆.₅Zr₄₈Al₄Nb₁.₅ MG shows an increased propensity for the formation of brittle Cu₁₀Zr₇ intermetallic phase, compared to Cu₄₇.₅Zr₄₇.₅Al₅ and Cu₄₇.₅Zr₄₈Al₄Co₀.₅ MGs. The TTT diagram for the isothermal heating of Cu₄₆.₅Zr₄₈Al₄Nb₁.₅ shows an apparent double-nose shape which corresponds to the primary crystallization of Cu₁₀Zr₇ at lower temperatures and B2 CuZr at higher temperatures.
3

Synthesis, microstructure, and deformation mechanisms of CuZr-based bulk metallic glass composites

Song, Kaikai 27 November 2013 (has links) (PDF)
In the past, it has been found that CuZr-based BMG composites containing B2 CuZr crystals in the glassy matrix display significant plasticity with obvious work hardening. In this work, it was tried to provide a strategy for pinpointing the formation of CuZr-based BMG composites, to modify the microstructures of these composites, and to clarify their yielding and deformation mechanisms. In order to pinpoint the formation of CuZr-based BMG composites, the phase formation and structural evolution of 11 kinds of CuZr-based alloy systems, altogether 36 different compositions, during heating and quenching processes were investigated. An endothermic event between the crystallization and melting peaks was found to be associated with a eutectoid transformation of the B2 CuZr phase. With the addition of elements to the CuZr-based alloys, this endothermic peak(s) shifts to lower or higher temperatures, implying that minor element additions can change the thermal stability of the B2 CuZr phase. By considering the thermal stability of the supercooled liquid, i.e. its resistance against crystallization, and the thermal stability of the B2 CuZr phase, a new strategy to select compositions, which form metastable CuZr-based composites consisting of an amorphous phase and B2 CuZr crystals, is proposed. It is characterized by a parameter, K = Tf /TL, where Tf and TL are the final temperature of the eutectoid transformation during heating and the liquidus temperature of the alloy, respectively. Based on this criterion, the present CuZr-based alloys are classified into three types. For Type I alloys with lower K values, it is difficult to obtain bulk metallic glass (BMG) composites. For Type III alloys with higher K values, BMG composites with larger dimensions are prone to be fabricated, whereas only moderate-sized BMG composites can be obtained for Type II possessing intermediate K values. Accordingly, CuZr-based BMG composites containing B2 CuZr phase in the glassy matrix for different alloy systems were successfully fabricated into different dimensions. For the sake of controlling the formation of the B2 CuZr phase in the glassy matrix and then changing the deformability of CuZr-based BMG composites, different methods were also used to fabricate these composites by: (1) introducing insoluable/high-melting particles; (2) appropriate re-melting treatments of master alloys; and (3) a new flash heating and quenching method. It was demonstrated that the volume fraction, size and distribution of the B2 phase in the glassy matrix can be controlled as well using the methods above. In order to clarify the excellent mechanical properties of CuZr-based BMG composites, the yielding and plastic deformation mechanisms of CuZr-based BMG composites were investigated based on SEM, XRD, and TEM observations. With the volume fraction of amorphous phase (famor) decreasing from 100 vol.% to 0 vol.%, a single-to-“double”-to-“triple”-double yielding transition was found. For the monolithic CuZr-based BMGs and their composites with the famor ³ 97.5 ± 0.5 vol.%, only one yielding at a strain of ~2% occurs, which is due to the formation of multiple shear bands in the glassy matrix, and the associative actions of the shear banding and the martensitic transformation (MT), respectively. When the famor is less than 97.5 ± 0.5 vol.%, a “yielding” occurs at a low strain of ~1%, which results from the yielding of B2 CuZr phase and the onset of the MT within B2 CuZr phase. When the famor is larger than 55 ± 3 vol.%, a “yielding” observed at strains >8% is ascribed from the operation of dislocations with a high density as well as partial de-twinning. It was also found that with the famor decreasing, the deformation mechanism gradually changes from a shear-banding dominated process, to a process being governed by the MT in the crystalline phase, resulting in different plastic strains. Owing to the importance of the MT and the shear banding to the deformation of CuZr-based BMG composites, the details of the MT and the shear banding process were investigated. On one hand, it was found that the MT temperatures of CuZr-based martensitic alloys have a clear relationship with the respective electronic structure and the lattice parameter of the equiatomic CuZr intermetallics. The MT temperatures of the studied alloys can be evaluated by the average concentration of valence electrons. Additional elements with larger atomic radius can affect the stacking fault energy and the electronic charge density redistribution, resulting in the difference of the electronic structures. On the other hand, the formation and multiplication of shear bands for CuZr-based BMG composites is associated with the storage and dissipation of the partial elastic energy during the plastic deformation. When microstructural inhomogeneities at different length scales are introduced into the glassy matrix, the elastic energy stored in the sample-machine system during the plastic deformation is redistributed, resulting in a transition of shear banding process from a chaotic behavior to a self-organized critical state. All in all, our studies and observations provide an understanding of the formation, deformation, and microstrcutural optimization of CuZr-based BMG composites and give guidance on how to improve the ductility/toughness of BMGs. / In letzter Zeit zeigte sich, dass massive Cu-Zr-basierte metallische Glaskomposite, welche B2 CuZr-Kristallite in der amorphen Matrix enthalten, eine ausgeprägte Plastizität mit klarer Kaltverfestigung aufweisen. Im Rahmen dieser Arbeit wurde versucht, eine Strategie zur zielgenauen Einstellung der Phasenbildung und des dazugehörigen Gefüges von massiven CuZr-basierten Glas-Matrix-Kompositen bereitzustellen, sowie deren Fließ- und Verformungsmechanismen aufzuklären. Es wurden elf verschiedene CuZr-basierte Legierungssysteme, insgesamt 36 verschiedene Zusammensetzungen, während Heiz- und Abschreckprozessen untersucht, um die Phasenbildung samt Gefüge von massiven CuZr-basierten Glas-Matrix-Kompositen zielgenau einzustellen. Bei CuZr-basierten metallischen Gläsern kann eine endotherme Reaktion zwischen Kristallisation und Schmelzvorgang der eutektoiden Umwandlung von B2 CuZr zugeordnet werden. Mit Zugabe verschiedener Elemente zur CuZr-Basislegierung kann diese Umwandlung zu höheren bzw. niedrigeren Temperaturen verschoben werden. Bereits geringe Beimischungen beeinflussen die thermische Stabilität der B2 CuZr-Phase. Unter Berücksichtigung der thermischen Stabilität, sowie des Widerstands gegen Kristallisation der unterkühlten Schmelze und der B2 CuZr-Phase wurde eine neue Strategie zur Auswahl des Zusammensetzungsgebiets metastabiler CuZr-Legierungen verschiedener Durchmesser vorgeschlagen. Dieser Widerstand kann durch den Parameter K=Tf/TL beschrieben werden, wobei Tf die Endtemperatur der eutektoiden Umwandlung und TL die Liquidustemperatur sind. Basierend auf diesem Parameter können die untersuchten CuZr-basierten Legierungen in drei Klassen unterteilt werden. Für Legierungen vom Typ I mit niedrigeren K-Werten, ist es schwer massive metallische Glas-Komposite (BMG-Komposite) zu erhalten. Im Gegensatz dazu lassen sich für Legierungen vom Typ III, mit höheren K-Werten, BMG-Komposite mit größeren Probendurchmessern herstellen und Legierungen vom Typ II mit einem mittleren K-Wert mit moderaten Probendurchmessern erzeugt werden. Folglich wurden CuZr-basierte Glas-Matrix-Komposite verschiedener Legierungssysteme mit B2-Phase in der amorphen Matrix erfolgreich in unterschiedlichen Geometrien hergestellt. Zur Kontrolle der Ausbildung der B2-Phase in der amorphen Matrix wurden unterschiedliche Methoden verwendet, um duktile CuZr-basierte BMG-Komposite herzustellen: (1) Einbringen von unlöslichen, hochschmelzenden Partikeln; (2) geeignete Wiederaufschmelzbehandlungen der Vorlegierungen; (3) eine neue Schnellerhitzungs- und -Abschreckmethode. Es konnte gezeigt werden, dass der Volumenanteil, sowie die Größe und Verteilung der B2-Phase in der amorphen Matrix durch die oben genannten Methoden kontrolliert werden können. Um die mechanischen Eigenschaften hinsichtlich des Fließens und der plastischen Deformationsmechanismen von CuZr-basierten BMG-Kompositen aufzuklären, wurden diese näher mittels Rasterelektronenmikroskopie, Röntgenbeugung und Durchstrahlungs-elektronenmikroskopie untersucht. Mit sinkendem Volumenanteil der amorphen Phase (famor) von 100 vol.% auf 0 vol.% kann ein Übergang von einer über zwei zu drei Fließgrenzen beobachtet werden. Für monolithische CuZr-basierte BMGs und ihre Komposite mit einem Anteil famor ≥ 97.5 ± 0.5vol.% erfolgt das Fließen ab einer Stauchung von ~2% durch Ausbildung von mehreren Scherbänden in der amorphen Matrix bzw. dem Zusammenwirken des dazugehörigen Scherens und der Martensitumwandlung. Bei einem Anteil famor unter 97.5 ± 0.5 vol.% findet ein Fließen bei niedrigerer Stauchung von ~1% statt. Dies geschieht aufgrund des Fließens und der beginnenden martensitischen Umwandlungen der B2 CuZr-Phase. Bei einem Anteil famor größer als 55 ± 3 vol.% kann ein Fließen oberhalb einer Stauchung von 8% durch die Interaktion von Versetzungen bei hoher Versetzungsdichte sowie partiellem „Entzwillingen“, beobachtet werden. Es wurde herausgefunden, dass mit sinkendem famor der Verformungsmechanismus schrittweise von einem Scherband dominierten zu einem von der martensitischen Umwandlung dominierten Mechanismus übergeht. Dieser Übergang führt zu Unterschieden in der plastischen Verformung. Da für das Verformungsverhalten von CuZr-basierten BMG-Kompositen die deformationsinduzierte martensitische Umwandlung und die Entstehung sowie Ausbreitung von Scherbändern von herausragender Bedeutung sind, wurden sie näher untersucht. Einerseits wurde herausgefunden, dass die Umwandlungstemperatur der martensitischen Umwandlung von CuZr-basierten martensitischen Legierungen in klarer Beziehung zur entsprechenden Elektronenstruktur und der Gitterkonstanten der äquiatomaren intermetallischen CuZr-Phasen stehen. Die martensitischen Umwandlungstemperaturen der untersuchten Legierungen können über die mittlere Valenzelektronenkonzentration ausgewertet werden. Zusätzliche Elemente mit größerem Atomradius können die Stapelfehlerenergie und die Ladungsdichteverteilung ändern, was in unterschiedliche Elektronenstrukturen mündet. Andererseits ist die Entstehung und Vervielfachung von Scherbändern in CuZr-basierten BMG-Kompositen verbunden mit der Speicherung und Dissipation der partiellen elastischen Energie während der plastischen Verformung. Durch das Einbringen von Gefügeinhomogenitäten unterschiedlicher Größe in die Glasmatrix, wird die elastische Energie, die im System Probe-Maschine gespeichert ist, während der plastischen Deformation umverteilt. Dies führt zu einem Übergang des Schervorgangs von chaotischem Verhalten zu einem selbstorganisierten kritischen Zustand. Insgesamt stellen unsere Untersuchungen und Beobachtungen ein Verständnis der Ausbildung, Verfomung und Gefügeoptimierung von CuZr-basierten BMG-Kompositen bereit und sollen als Leitfaden zur Verbesserung der Duktilität bzw. Zähigkeit von BMGs dienen.
4

Synthesis, microstructure, and deformation mechanisms of CuZr-based bulk metallic glass composites

Song, Kaikai 11 November 2013 (has links)
In the past, it has been found that CuZr-based BMG composites containing B2 CuZr crystals in the glassy matrix display significant plasticity with obvious work hardening. In this work, it was tried to provide a strategy for pinpointing the formation of CuZr-based BMG composites, to modify the microstructures of these composites, and to clarify their yielding and deformation mechanisms. In order to pinpoint the formation of CuZr-based BMG composites, the phase formation and structural evolution of 11 kinds of CuZr-based alloy systems, altogether 36 different compositions, during heating and quenching processes were investigated. An endothermic event between the crystallization and melting peaks was found to be associated with a eutectoid transformation of the B2 CuZr phase. With the addition of elements to the CuZr-based alloys, this endothermic peak(s) shifts to lower or higher temperatures, implying that minor element additions can change the thermal stability of the B2 CuZr phase. By considering the thermal stability of the supercooled liquid, i.e. its resistance against crystallization, and the thermal stability of the B2 CuZr phase, a new strategy to select compositions, which form metastable CuZr-based composites consisting of an amorphous phase and B2 CuZr crystals, is proposed. It is characterized by a parameter, K = Tf /TL, where Tf and TL are the final temperature of the eutectoid transformation during heating and the liquidus temperature of the alloy, respectively. Based on this criterion, the present CuZr-based alloys are classified into three types. For Type I alloys with lower K values, it is difficult to obtain bulk metallic glass (BMG) composites. For Type III alloys with higher K values, BMG composites with larger dimensions are prone to be fabricated, whereas only moderate-sized BMG composites can be obtained for Type II possessing intermediate K values. Accordingly, CuZr-based BMG composites containing B2 CuZr phase in the glassy matrix for different alloy systems were successfully fabricated into different dimensions. For the sake of controlling the formation of the B2 CuZr phase in the glassy matrix and then changing the deformability of CuZr-based BMG composites, different methods were also used to fabricate these composites by: (1) introducing insoluable/high-melting particles; (2) appropriate re-melting treatments of master alloys; and (3) a new flash heating and quenching method. It was demonstrated that the volume fraction, size and distribution of the B2 phase in the glassy matrix can be controlled as well using the methods above. In order to clarify the excellent mechanical properties of CuZr-based BMG composites, the yielding and plastic deformation mechanisms of CuZr-based BMG composites were investigated based on SEM, XRD, and TEM observations. With the volume fraction of amorphous phase (famor) decreasing from 100 vol.% to 0 vol.%, a single-to-“double”-to-“triple”-double yielding transition was found. For the monolithic CuZr-based BMGs and their composites with the famor ³ 97.5 ± 0.5 vol.%, only one yielding at a strain of ~2% occurs, which is due to the formation of multiple shear bands in the glassy matrix, and the associative actions of the shear banding and the martensitic transformation (MT), respectively. When the famor is less than 97.5 ± 0.5 vol.%, a “yielding” occurs at a low strain of ~1%, which results from the yielding of B2 CuZr phase and the onset of the MT within B2 CuZr phase. When the famor is larger than 55 ± 3 vol.%, a “yielding” observed at strains >8% is ascribed from the operation of dislocations with a high density as well as partial de-twinning. It was also found that with the famor decreasing, the deformation mechanism gradually changes from a shear-banding dominated process, to a process being governed by the MT in the crystalline phase, resulting in different plastic strains. Owing to the importance of the MT and the shear banding to the deformation of CuZr-based BMG composites, the details of the MT and the shear banding process were investigated. On one hand, it was found that the MT temperatures of CuZr-based martensitic alloys have a clear relationship with the respective electronic structure and the lattice parameter of the equiatomic CuZr intermetallics. The MT temperatures of the studied alloys can be evaluated by the average concentration of valence electrons. Additional elements with larger atomic radius can affect the stacking fault energy and the electronic charge density redistribution, resulting in the difference of the electronic structures. On the other hand, the formation and multiplication of shear bands for CuZr-based BMG composites is associated with the storage and dissipation of the partial elastic energy during the plastic deformation. When microstructural inhomogeneities at different length scales are introduced into the glassy matrix, the elastic energy stored in the sample-machine system during the plastic deformation is redistributed, resulting in a transition of shear banding process from a chaotic behavior to a self-organized critical state. All in all, our studies and observations provide an understanding of the formation, deformation, and microstrcutural optimization of CuZr-based BMG composites and give guidance on how to improve the ductility/toughness of BMGs.:Contents Abstract V Kurzfassung IX 1 Theoretical background 1 1.1 Development of metallic glasses 1 1.2 Formation of metallic glasses 3 1.2.1 Thermodynamic considerations 5 1.2.2 Kinetic considerations 7 1.2.3 Structural considerations 10 1.3 Mechanical properties of metallic glasses 14 1.4 Deformation mechanisms of metallic glasses 18 1.4.1 Shear transformation zone theory 18 1.4.2 Free volume model 20 1.4.3 Potential energy landscape theory 21 1.4.4 Cooperative Shearing Model 22 1.5 Strategies to improve the ductility of metallic glasses 24 1.5.1 Nano-scaled microstructural inhomogeneities 25 1.5.2 Micro-scaled microstructural inhomogeneities 28 1.5.3 CuZr-based BMG composites 31 2 Experimental techniques 37 2.1 Sample preparation 37 2.1.1 Arc melting/suction casting 37 2.1.2 Centrifugal casting 38 2.1.3 High-frequency melting/injection casting 39 2.1.4 Melt spinning 39 2.1.5 Ball milling and powder consolidation 40 2.2 Structure characterizations 41 2.2.1 X-ray diffraction 41 2.2.2 Optical microscopy and scanning electron microscopy 41 2.2.3 Transmission electron microscopy 42 2.3 Thermal analysis 43 2.3.1 Differential scanning calorimetry 43 2.3.2 Dilatometry 44 2.4 Measurement of the elastic constants 44 2.5 Compression and tensile tests 44 3 Strategy for pinpointing the formation of CuZr-based BMG composites 46 3.1 Theoretical analysis for the formation of CuZr-based BMG composites 46 3.2 Nature of the eutectoid B2 CuZr transformation 49 3.2.1 Shift of endothermic peak(s) related to the eutectoid B2 transformation 49 3.2.2 Thermal stability of the B2 CuZr phase 52 3.3 Formation of the amorphous phase and the B2 CuZr phase 54 3.4 A new parameter for pinpointing the formation of CuZr-based BMG composites 57 3.5 Conclusions 59 4 Synthesis of CuZr-based BMG composites 60 4.1 Formation of Type I alloys 60 4.2 Formation of Type II alloys 62 4.2.1 Formation and microstructures of the Cu50Zr50 BMG composites 62 4.2.2 Formation and microstructures of the Cu-Zr-Ti BMG composites 67 4.2.3 Formation and microstructures of the Cu-Zr-Al and Cu-Zr-Ag BMG composites 70 4.3 Formation of Type III alloys 74 4.4 Conclusions 76 5 Processing routes for CuZr-based BMG composites 78 5.1 Influence of the melting current/time 78 5.2 Adjusting the cooling rate 81 5.3 Re-melting of the pre-alloy 82 5.4 Introduction of boron nitride particles 84 5.5 Effect of TaW inoculation 87 5.6 “Flash annealing” 93 5.7 Conclusions 100 6 Yielding and deformation mechanisms of CuZr-based BMG composites 101 6.1 Formation and microstructures of Cu47.5Zr47.5Al5 BMG composites 101 6.2 Deformation behavior of Cu47.5Zr47.5Al5 BMG composites 105 6.3 Yielding and plastic deformation mechanisms 110 6.3.1 Yielding and plastic deformation during stage I 110 6.3.2 Yielding and plastic deformation during stage II 113 6.3.3 Yielding and plastic deformation during stage III 114 6.3.4 Plastic deformation during stage IV 118 6.3.5 Fracture behavior 120 6.4 Modeling of the “yielding” behavior 121 6.5 Conclusions 124 7 Martensitic transformation behavior in CuZr-based alloys 126 7.1 Electronic structures and martensitic transformation 126 7.1.1 Electronic structures of the B2 CuZr phase 127 7.1.2 Electronic structures of CuZr martensites 129 7.2 Effect of minor additions on the martensitic transformation 130 7.2.1 Formation of Cu-Zr-Ti crystalline samples 130 7.2.2 Effect of Ti element on the martensitic transformation 133 7.2.3 Effect of minor elements on the martensitic transformation temperature 135 7.3 Martensitic transformation in rapidly solidified alloys 139 7.3.1 Martensitic transformation in the as-cast Cu50Zr50 alloys 140 7.3.2 Martensitic transformation in the as-cast Cu-Zr-Al alloys 142 7.4 Conclusions 145 8 Shear banding process of CuZr-based BMG composites 146 8.1 Serrated flow in CuZr-based BMG composites 146 8.2 Statistical analysis of the serrations for brittle and ductile BMGs 148 8.3 Different statistical results of the serration events for CuZr-based BMG composites during deformation 152 8.4 Energy criteria for serrations in CuZr-based BMG and their composites 155 8.5 Conclusions 158 9 Summary and Outlook 160 Publications 162 Acknowledgements 163 References 164 Schriftliche Erklärung 191 / In letzter Zeit zeigte sich, dass massive Cu-Zr-basierte metallische Glaskomposite, welche B2 CuZr-Kristallite in der amorphen Matrix enthalten, eine ausgeprägte Plastizität mit klarer Kaltverfestigung aufweisen. Im Rahmen dieser Arbeit wurde versucht, eine Strategie zur zielgenauen Einstellung der Phasenbildung und des dazugehörigen Gefüges von massiven CuZr-basierten Glas-Matrix-Kompositen bereitzustellen, sowie deren Fließ- und Verformungsmechanismen aufzuklären. Es wurden elf verschiedene CuZr-basierte Legierungssysteme, insgesamt 36 verschiedene Zusammensetzungen, während Heiz- und Abschreckprozessen untersucht, um die Phasenbildung samt Gefüge von massiven CuZr-basierten Glas-Matrix-Kompositen zielgenau einzustellen. Bei CuZr-basierten metallischen Gläsern kann eine endotherme Reaktion zwischen Kristallisation und Schmelzvorgang der eutektoiden Umwandlung von B2 CuZr zugeordnet werden. Mit Zugabe verschiedener Elemente zur CuZr-Basislegierung kann diese Umwandlung zu höheren bzw. niedrigeren Temperaturen verschoben werden. Bereits geringe Beimischungen beeinflussen die thermische Stabilität der B2 CuZr-Phase. Unter Berücksichtigung der thermischen Stabilität, sowie des Widerstands gegen Kristallisation der unterkühlten Schmelze und der B2 CuZr-Phase wurde eine neue Strategie zur Auswahl des Zusammensetzungsgebiets metastabiler CuZr-Legierungen verschiedener Durchmesser vorgeschlagen. Dieser Widerstand kann durch den Parameter K=Tf/TL beschrieben werden, wobei Tf die Endtemperatur der eutektoiden Umwandlung und TL die Liquidustemperatur sind. Basierend auf diesem Parameter können die untersuchten CuZr-basierten Legierungen in drei Klassen unterteilt werden. Für Legierungen vom Typ I mit niedrigeren K-Werten, ist es schwer massive metallische Glas-Komposite (BMG-Komposite) zu erhalten. Im Gegensatz dazu lassen sich für Legierungen vom Typ III, mit höheren K-Werten, BMG-Komposite mit größeren Probendurchmessern herstellen und Legierungen vom Typ II mit einem mittleren K-Wert mit moderaten Probendurchmessern erzeugt werden. Folglich wurden CuZr-basierte Glas-Matrix-Komposite verschiedener Legierungssysteme mit B2-Phase in der amorphen Matrix erfolgreich in unterschiedlichen Geometrien hergestellt. Zur Kontrolle der Ausbildung der B2-Phase in der amorphen Matrix wurden unterschiedliche Methoden verwendet, um duktile CuZr-basierte BMG-Komposite herzustellen: (1) Einbringen von unlöslichen, hochschmelzenden Partikeln; (2) geeignete Wiederaufschmelzbehandlungen der Vorlegierungen; (3) eine neue Schnellerhitzungs- und -Abschreckmethode. Es konnte gezeigt werden, dass der Volumenanteil, sowie die Größe und Verteilung der B2-Phase in der amorphen Matrix durch die oben genannten Methoden kontrolliert werden können. Um die mechanischen Eigenschaften hinsichtlich des Fließens und der plastischen Deformationsmechanismen von CuZr-basierten BMG-Kompositen aufzuklären, wurden diese näher mittels Rasterelektronenmikroskopie, Röntgenbeugung und Durchstrahlungs-elektronenmikroskopie untersucht. Mit sinkendem Volumenanteil der amorphen Phase (famor) von 100 vol.% auf 0 vol.% kann ein Übergang von einer über zwei zu drei Fließgrenzen beobachtet werden. Für monolithische CuZr-basierte BMGs und ihre Komposite mit einem Anteil famor ≥ 97.5 ± 0.5vol.% erfolgt das Fließen ab einer Stauchung von ~2% durch Ausbildung von mehreren Scherbänden in der amorphen Matrix bzw. dem Zusammenwirken des dazugehörigen Scherens und der Martensitumwandlung. Bei einem Anteil famor unter 97.5 ± 0.5 vol.% findet ein Fließen bei niedrigerer Stauchung von ~1% statt. Dies geschieht aufgrund des Fließens und der beginnenden martensitischen Umwandlungen der B2 CuZr-Phase. Bei einem Anteil famor größer als 55 ± 3 vol.% kann ein Fließen oberhalb einer Stauchung von 8% durch die Interaktion von Versetzungen bei hoher Versetzungsdichte sowie partiellem „Entzwillingen“, beobachtet werden. Es wurde herausgefunden, dass mit sinkendem famor der Verformungsmechanismus schrittweise von einem Scherband dominierten zu einem von der martensitischen Umwandlung dominierten Mechanismus übergeht. Dieser Übergang führt zu Unterschieden in der plastischen Verformung. Da für das Verformungsverhalten von CuZr-basierten BMG-Kompositen die deformationsinduzierte martensitische Umwandlung und die Entstehung sowie Ausbreitung von Scherbändern von herausragender Bedeutung sind, wurden sie näher untersucht. Einerseits wurde herausgefunden, dass die Umwandlungstemperatur der martensitischen Umwandlung von CuZr-basierten martensitischen Legierungen in klarer Beziehung zur entsprechenden Elektronenstruktur und der Gitterkonstanten der äquiatomaren intermetallischen CuZr-Phasen stehen. Die martensitischen Umwandlungstemperaturen der untersuchten Legierungen können über die mittlere Valenzelektronenkonzentration ausgewertet werden. Zusätzliche Elemente mit größerem Atomradius können die Stapelfehlerenergie und die Ladungsdichteverteilung ändern, was in unterschiedliche Elektronenstrukturen mündet. Andererseits ist die Entstehung und Vervielfachung von Scherbändern in CuZr-basierten BMG-Kompositen verbunden mit der Speicherung und Dissipation der partiellen elastischen Energie während der plastischen Verformung. Durch das Einbringen von Gefügeinhomogenitäten unterschiedlicher Größe in die Glasmatrix, wird die elastische Energie, die im System Probe-Maschine gespeichert ist, während der plastischen Deformation umverteilt. Dies führt zu einem Übergang des Schervorgangs von chaotischem Verhalten zu einem selbstorganisierten kritischen Zustand. Insgesamt stellen unsere Untersuchungen und Beobachtungen ein Verständnis der Ausbildung, Verfomung und Gefügeoptimierung von CuZr-basierten BMG-Kompositen bereit und sollen als Leitfaden zur Verbesserung der Duktilität bzw. Zähigkeit von BMGs dienen.:Contents Abstract V Kurzfassung IX 1 Theoretical background 1 1.1 Development of metallic glasses 1 1.2 Formation of metallic glasses 3 1.2.1 Thermodynamic considerations 5 1.2.2 Kinetic considerations 7 1.2.3 Structural considerations 10 1.3 Mechanical properties of metallic glasses 14 1.4 Deformation mechanisms of metallic glasses 18 1.4.1 Shear transformation zone theory 18 1.4.2 Free volume model 20 1.4.3 Potential energy landscape theory 21 1.4.4 Cooperative Shearing Model 22 1.5 Strategies to improve the ductility of metallic glasses 24 1.5.1 Nano-scaled microstructural inhomogeneities 25 1.5.2 Micro-scaled microstructural inhomogeneities 28 1.5.3 CuZr-based BMG composites 31 2 Experimental techniques 37 2.1 Sample preparation 37 2.1.1 Arc melting/suction casting 37 2.1.2 Centrifugal casting 38 2.1.3 High-frequency melting/injection casting 39 2.1.4 Melt spinning 39 2.1.5 Ball milling and powder consolidation 40 2.2 Structure characterizations 41 2.2.1 X-ray diffraction 41 2.2.2 Optical microscopy and scanning electron microscopy 41 2.2.3 Transmission electron microscopy 42 2.3 Thermal analysis 43 2.3.1 Differential scanning calorimetry 43 2.3.2 Dilatometry 44 2.4 Measurement of the elastic constants 44 2.5 Compression and tensile tests 44 3 Strategy for pinpointing the formation of CuZr-based BMG composites 46 3.1 Theoretical analysis for the formation of CuZr-based BMG composites 46 3.2 Nature of the eutectoid B2 CuZr transformation 49 3.2.1 Shift of endothermic peak(s) related to the eutectoid B2 transformation 49 3.2.2 Thermal stability of the B2 CuZr phase 52 3.3 Formation of the amorphous phase and the B2 CuZr phase 54 3.4 A new parameter for pinpointing the formation of CuZr-based BMG composites 57 3.5 Conclusions 59 4 Synthesis of CuZr-based BMG composites 60 4.1 Formation of Type I alloys 60 4.2 Formation of Type II alloys 62 4.2.1 Formation and microstructures of the Cu50Zr50 BMG composites 62 4.2.2 Formation and microstructures of the Cu-Zr-Ti BMG composites 67 4.2.3 Formation and microstructures of the Cu-Zr-Al and Cu-Zr-Ag BMG composites 70 4.3 Formation of Type III alloys 74 4.4 Conclusions 76 5 Processing routes for CuZr-based BMG composites 78 5.1 Influence of the melting current/time 78 5.2 Adjusting the cooling rate 81 5.3 Re-melting of the pre-alloy 82 5.4 Introduction of boron nitride particles 84 5.5 Effect of TaW inoculation 87 5.6 “Flash annealing” 93 5.7 Conclusions 100 6 Yielding and deformation mechanisms of CuZr-based BMG composites 101 6.1 Formation and microstructures of Cu47.5Zr47.5Al5 BMG composites 101 6.2 Deformation behavior of Cu47.5Zr47.5Al5 BMG composites 105 6.3 Yielding and plastic deformation mechanisms 110 6.3.1 Yielding and plastic deformation during stage I 110 6.3.2 Yielding and plastic deformation during stage II 113 6.3.3 Yielding and plastic deformation during stage III 114 6.3.4 Plastic deformation during stage IV 118 6.3.5 Fracture behavior 120 6.4 Modeling of the “yielding” behavior 121 6.5 Conclusions 124 7 Martensitic transformation behavior in CuZr-based alloys 126 7.1 Electronic structures and martensitic transformation 126 7.1.1 Electronic structures of the B2 CuZr phase 127 7.1.2 Electronic structures of CuZr martensites 129 7.2 Effect of minor additions on the martensitic transformation 130 7.2.1 Formation of Cu-Zr-Ti crystalline samples 130 7.2.2 Effect of Ti element on the martensitic transformation 133 7.2.3 Effect of minor elements on the martensitic transformation temperature 135 7.3 Martensitic transformation in rapidly solidified alloys 139 7.3.1 Martensitic transformation in the as-cast Cu50Zr50 alloys 140 7.3.2 Martensitic transformation in the as-cast Cu-Zr-Al alloys 142 7.4 Conclusions 145 8 Shear banding process of CuZr-based BMG composites 146 8.1 Serrated flow in CuZr-based BMG composites 146 8.2 Statistical analysis of the serrations for brittle and ductile BMGs 148 8.3 Different statistical results of the serration events for CuZr-based BMG composites during deformation 152 8.4 Energy criteria for serrations in CuZr-based BMG and their composites 155 8.5 Conclusions 158 9 Summary and Outlook 160 Publications 162 Acknowledgements 163 References 164 Schriftliche Erklärung 191
5

Synthesis and Characterization of Bulk Metallic Glasses, Composites and Hybrid Porous Structures by Powder Metallurgy of Metallic Glassy Powders

Kim, Jin Young 18 June 2015 (has links) (PDF)
Metallic glasses exhibit many attractive attributes such as outstanding mechanical, magnetic, and chemical properties. Due to the absence of crystal defects, metallic glasses display remarkable mechanical properties including higher specific strength than crystalline alloys, high hardness and larger fracture resistance than ceramics. The technological breakthrough of metallic glasses, however, has been greatly hindered by the limited plastic strain to failure. Thus, several strategies have been employed to improve the intrinsic and extrinsic effects on the flow behavior of metallic glasses with respect to their fracture toughness and overall plastic strain. One of the suggested strategies is the production of a composite consisting of the brittle metallic glass along with a ductile second phase that either acts as an active carrier of plastic strain or passively enhances the multiplication of shear bands via shear-band splitting . Another approach for increasing plastic deformation consists of introducing pores as a gaseous second phase into the material. The pores are similarly effective in delaying catastrophic failure resulting from shear band localization. In metallic glasses with high porosity, propagation of shear bands can even become stable, enabling macroscopic compressive strains of more than 80 % without fracture. In this thesis, Ni59Zr20Ti16Si2Sn3 glass and its composites have been fabricated using mechanical milling and consolidation by hot pressing followed by extrusion of Ni59Zr20Ti16Si2Sn3 metallic glass powder or Ni59Zr20Ti16Si2Sn3 metallic glass powder reinforced with 40 vol.% of brass particles to obtained bulk composite materials with high strength and enhanced compressive plasticity and to generate porous structure in Ni59Zr20Ti16Si2Sn3 metallic glass using selective dissolution. The brass–glass powder mixtures to be consolidated were prepared using two different approaches: manual blending and ball milling to properly vary size and morphology of the second phase in the composites. Powder consolidation was carried out at temperatures within the supercooled Liquid (SCL) region, where the glassy phase displays a strong decrease of viscosity, with using the sintering parameters which were chosen after analysis of the crystallization behavior of the glassy phase to avoid its crystallization during consolidation. Ball milling has a significant effect on the microstructure of the powder mixtures: a refined layered structure consisting of alternating layer of glass and brass is formed as a result of the mechanical deformation. However, ball milling reduces the amorphous content of the composite powders due to mechanically induced crystallization and reaction of the glass and brass phases during heating. In addition, the milling of the composite powders and the following consolidation step reduces the amorphous content by about 50 %. The bulk amorphous Ni59Zr20Ti16Si2Sn3 alloy synthesized by hot pressing exhibits higher strength (2.28 GPa) than that of the as-cast bulk amorphous Ni59Zr20Ti16Si2Sn3 alloy (2.2 GPa). The mechanical behavior of the glass-brass composites is significantly affected by the control of the microstructure between the reinforcement and the nano-grained matrix phase through the different methods used for the preparation of the powder mixtures. The strength of the composites increases from 500 MPa for pure brass to 740 and 925 MPa for the composites with 40 and 60 vol.% glass reinforcement prepared by manual blending. The strength further increases to 1240 and 1640 MPa for the corresponding composites produced by ball milling caused by the remarkable effect of the matrix ligament size on the strengthening of the composites. The porous metallic glass was obtained by the selective dissolution in a HNO3 solution of the fugitive brass phase in the Ni59Zr20Ti16Si2Sn3 composite. The microstructure of the porous samples consists of highly elongated layered pore structures and/or irregularly shaped pores. The average size of the pores depends on the processing parameters and can be varied in the range of 0.4–15 µm. Additional porous samples were prepared from different extruded composite precursors of blended and milled powder mixtures. This leads to customized hybrid porous structures consisting of a combination of large and small pores. The specific surface area of the porous Ni-based metallic glass powder measured by the BET method is 16 m2/g, while the as-atomized Ni59Zr20Ti16Si2Sn3 powder has a specific surface area of 0.29 m2/g. This indicates a mechanical milling induced enhancement in surface area by refinement of the fugitive brass phase. However the specific surface area of the porous Ni-based metallic glass obtained from as-extruded precursors is 10 m2/g caused by a breakdown of the porous structure during selective dissolution of the nano-scale fugitive phase. Although milling of the present composite powders and the following consolidation step reduces the amorphous content by about 50 %, through the use of glassy phases with improved stability against mechanically induced crystallization along with reduced affinity with the fugitive phase to avoid unwanted reactions during processing, this approach using powder metallurgical offers the possibility to produce highly active porous bulk materials for functional applications, such as catalysis, which require the fast transport of reactants and products provided by the large pores along with high catalytic activity ensured by the large surface area characterizing the small pores. Accordingly, gas absorption ability tests of porous Ni-based metallic glass powders have been performed in order to evaluate the possibility of replacement of conventional support materials. From these first tests it can be conclude that additional opportunities should exist for nano-porous MGs with designed architecture of porous structures that are tailored to specific functional applications. / Metallische Gläser weisen viele attraktive mechanische, magnetische und chemische Eigenschaften auf. Aufgrund der fehlenden Kristallstruktur zeigen metallische Gläser bemerkenswerte mechanische Eigenschaften, einschließlich höherer spezifischer Festigkeit, höherer Härte und größerer Bruchfestigkeit als Keramik. Der technologischen Durchbruch metallischer Gläser wird jedoch bis heute stark von ihremspröden Bruchverhalten behindert. Deshalb wurden verschiedene Herstellungsverfahren entwirkt, um sowohl die plastische Verformung der metallischer Massivgläser zu erhöhen, als auch um die mechanischen Eigenschaften generell zu verbessern. Eine mögliche Methode, zur Erhöhung der Plastizität und zur Beeinflussung der mechanischen Eigenschaften der metallischen Gläser ist der Einbau zweiter Phasen, wie z.B. durch Fremdpartikel Verstärkung oder Poren in Kompositen. Die Scherband bewegung wird durch die Wechselwirkung mit zweiten Phasen behindert, und gleichzeitig werden durch die in den Grenzflächen entstehenden Spannungsspitzen zwischen der zweiten Phase und der Matrix neue Scherbänder initiert. Dies führt zur Bildung einer Vielzahl von Scherbändern, was eine höhere plastische Dehnung zur Folge hat, da die Deformationsenergie auf ein größeres Volumen verteilt wird. In der vorliegenden Arbeit wurden Ni59Zr20Ti16Si2Sn3 Massivglas und mit Messing- verstärkte Komposite durch Kugelmahlen und Heißpressen mit anschließender Extrusion von Ni59Zr20Ti16Si2Sn3 Pulver oder Ni59Zr20Ti16Si2Sn3 Pulver mit 40 vol.% Messing Partikeln hergestellt. Neben der Herstellung der Ni59Zr20Ti16Si2Sn3 Komposite mit Messing Partikeln, wurden auch Ni59Zr20Ti16Si2Sn3 Komposite mit definierter Porösität durch die selektive Auflösung der zweiten Phase erzeugt. Die verwendete Mischung von Messing und metallischem Glaspulver wurde über zwei verschiedene Ansätzen hergestellt: die Pulver wurden manuell gemischt oder gemahlen, um die optimale Größe und Morphologie der zweiten Phase in den Komositen zu erzeugen. Das Sintern der Pulver erfolgte bei Temperaturen im Bereich der unterkühlten Schmelze, wobei die Legierung eine starke Abnahme der Viskosität zeigte, mit Hilfe optimierter Sinterparameter, die nach der Analyse des Kristallisationsverhaltens der gläsernen Phase ausgewählt wurden, um deren Kristallisation während der Konsolidierung zu vermeiden. Kugelmahlen hat einen signifikanten Einfluss auf die Mikrostruktur der gemahlenen Pulver: Eine verfeinerte Lamellare Struktur, teils bestehend aus Glas und teils aus Messing, wird durch mechanische Verformung gebildet. Kugelmahlen reduziert jedoch den amorphen Anteil der Komposite durch mechanische induzierte Kristallisation und die Reaktion der Glas- und Messing- Phasen durch Erwärmung. Das Kugelmahlen der Komposite (Pulver) und das darauf folgende Sintern führte zur eine Absenkung der freien Enthalpie der amorphen Phase um ca. 50%. Ni59Zr20Ti16Si2Sn3 metallische Massivgläser, welche durch Heißpressen hergestellt werden, weisen eine höhere Streckgrenze von 2.28 GPa als das gegossene Ni59Zr20Ti16Si2Sn3 Massivglas (2.2 GPa) auf. Die mechanischen Eigenschaften der mit Messing Ni59Zr20 Ti16Si2Sn3 verstärkten Komposite sind abhängig von der Kontrolle der Mikrostruktur zwischen den zweiten Phasen und der Matrixphase durch die verschiedenen Verfahren zur Herstellung von Pulvermischungen. Die Festigkeiten der Komposite, welche durch Handmischen und Heißpressen mit nachfolgender Extrusion hergestellt wurden, erhöhten sich von 500 MPa für reines Messing bis auf 740 und 925 MPa für die Komposite mit 40 und 60 Vol. % Glaspartikel- Verstärkung durch Handmischen. Die Festigkeiten erhöhten sich nochmals auf 1240 und 1640 MPa für die Komposite mit 40 und 60 Vol. % an Glaspartikel-Verstärkung mit lamellare Stuktur, die durch Kugelmahlen hergestellt würden. Die Ursache hier für liegt in der Wirkung der Ligamentabmessungen zwischen den Matrixbestandteilen hinsichtlich der Verfestigung der Komposite. Die Porösität im metallischen Glas wurde durch die selektive Auflösung der flüchtigen Messingphasen in den Kompositen mit Salpetersäure-Lösung erhalten. Die Mikrostuktur der porösen metallischen Gläser besteht aus stark elongiert geschichteten Porenstrukturen und/oder unregelmäßig geformten Poren. Die durchschnittliche Größe einer Pore hängt von den behandelnden Parametern ab und kann von 0.4–15 µm variieren. Weitere poröse Proben wurden ausgehend von verschiedenen extrudierten Komposit-Precursoren aus handgemischten und kugelgemahlenen Pulvermixturen erzeugt. Dies führte zu angepassten hybrid-porösen Strukturen bestehend aus einer Kombination von großen und kleinen Poren. Die spezifische Oberfläche des porösen Glaspulvers gemessen mit Hilfe der BET- Methode, beträgt 16m2/g, wohingegen das atomisierte Ni59Zr20Ti16Si2Sn3 MG Ausgangspulver eine spezifische Oberfläche von 0.29 m2/g besitzt. Dies weist darauf hin, dass das Mahlen eine Vergrößerung der Oberfläche durch die Verfeinerung der flüchtigen Messingphase induziert. Die spezifische Oberfläche der porösen-metallischen Gläser beträgt 10 m2/g und entsteht durch die Zerstörung der porösen Struktur während der selektiven Auflösung der nanoskaligen flüchtigen Phase. Obwohl das Kugelmahlen der Komposite (Pulver) und die darauf folgende Konsolidierung zwar den amorphen Anteil um etwa 50% reduziert, bietet die Pulvermetallurgische Herstellung durch die Verwendung von gläsernen Phasen mit verbesserter Stabilität gegenüber mechanisch induzierter Kristallisation, sowie einer reduzierten Affinität mit der flüchtigen Messingphase zur Vermeidung von unerwünschten Reaktionen während des Prozesses eine Möglichkeit, hochaktive poröse metallische Gläser für funktionelle Anwendungen, wie z.B. Katalyse, zu entwickeln. Hier ist eine schnelle Transport von Reaktanten und Produkten, welcher von den großen Poren, sowie eine hohe katalytische Aktivität, die von kleinen Poren und einer großen Oberfläche sichergestellt wird wesentlich. Daher wurden Untersuchungen zur Gasabsorptionsfähigkeit von porösem metallischen Glaspulver durchgeführt, um die Möglichkeit der Ersetzung von konventionellen Trägermaterialen bewerten zu können. Diese ersten Versuche zeigen die grundsäLzliche Eignung nano poröse metallischer Gläser zur Herstellung von porösen Strukturen mit einstellbarer Porenarchitektur auf die Langfristig für spezifische funktionelle Anwendungen von Interesse sein könnten.
6

Phase formation, thermal stability and mechanical behaviour of TiCu-based alloys

Gargarella, Piter 24 February 2014 (has links) (PDF)
The large elastic limit, the strength close to the theoretical limit, the excellent magnetic properties and good corrosion resistance of bulk metallic glasses (BMGs) make them promising for several applications such as micro-geared motor parts, pressure sensors, Coriolis flow meters, power inductors and coating materials. The main limitation of these materials is their reduced macroscopic ductility at room temperature, resulting from an inhomogeneous deformation concentrated in narrows shear bands. The poor ductility can be overcome by the incorporation of a ductile second phase in the glassy matrix to form composites, which exhibit a better balance between strength and ductility. Different types of BMG composites have been developed to date but considerable plastic strain during tensile or bending tests has been only obtained for composites with in-situ formation of the second phase during solidification. Among these in-situ formed composites, significant tensile ductility has been only observed for two types of alloys so far: TiZrBe-based and CuZr-based BMG composites. The former precipitate dendrites of the cubic β-(Ti,Zr) phase in the glass matrix, whereas the latter combine spherical precipitates of the cubic B2-CuZr shape memory phase within the glass. The CuZr-based BMG composites have certain advantages over the TiZrBe-based composites such as the absence of Be, which is a toxic element, and exhibit a strong work-hardening behaviour linked to the presence of the shape memory phase. This concept of “shape memory” BMG composites has been only applied to CuZr-based alloys so far. It is worth investigating if such a concept can be also used to enhance the plasticity of other BMGs. Additionally, the correlation between microstructure, phase formation and mechanical properties of these composites is still not fully understood, especially the role of the precipitates regarding shear band multiplication as well as the stress distribution in the glassy matrix, which should be significantly influenced by the precipitates. The aim of the present work is to develop a new family of shape memory bulk metallic glass composites in order to extend the concept initially developed for CuZr-based alloys. Their thermal and mechanical properties shall be correlated with the microstructure and phase formation in order to gain a deeper understanding of the fundamental deformation mechanisms and thermal behaviour. A candidate to form new shape memory BMG composites is the pseudo-binary TiCu-TiNi system because bulk glassy samples with a critical casting thickness of around 1 mm have been obtained in the compositional region where the cubic shape memory phase, B2-TiNi, precipitates. This phase undergoes a martensitic transformation to the orthorhombic B19-TiNi during cooling at around 325 K. The B2- and B19-TiNi exhibit an extensive deformation at room temperature up to 30% during tensile loading. Compositions in the Ti-Cu, Ti-Cu-Ni, Ti-Cu-Ni-Zr, Ti-Cu-Ni-Zr-(Si) and Ti-Cu-Ni-Co systems were selected based on literature data and on a recently proposed λ+Δh1/2 criterion, which considers the effect of atomic size mismatch between the elements and their electronic interaction. Samples were then produced by melt spinning (ribbons) and Cu-mould suction casting (rods and plates). The investigation started in the Ti-Cu system. A low glass-forming ability (GFA) was observed with formation of amorphous phase only in micrometer-thick ribbons and the results showed that the best glass former is located around Ti50Cu50. Considering that the GFA of the binary alloys can be further improved with additions of Ni, new Ti-Cu-Ni shape memory BMG composites were then developed in which the orthorhombic Ti(Ni,Cu) martensite precipitates in the glassy matrix. These alloys exhibit a high yield strength combined with large fracture strain and the precipitates show a reversible martensitic transformation from B19 to B2-type structure at a critical temperature around 320 K (during heating). The amorphous matrix stabilizes the high-temperature phase (B2 phase), which causes different transformation temperatures depending on whether the precipitates are partially or completely embedded in the glassy matrix. The deformation starts in the softer, crystalline phase, which generates a heterogeneous stress distribution in the glassy matrix and causes the formation of multiple shear bands. The precipitates also have the important function to block the fast movement of shear bands and hence retard fracture. However, the size of such composites is limited to 1 mm diameter rods because of their low GFA, which can be further improved by adding CuZr. New Ti-Cu-Ni-Zr composites with diameter ranging from 2 to 3 mm were developed, which consist mainly of spherical precipitates of the cubic B2-(Ti,Zr)(Cu,Ni) and the glassy phase. The interrelation between composite strength and volume fraction of B2 phase was analysed in detail, which follows the rule of mixture for values lower than 30 vol.% or the load-bearing model for higher values. The fracture strain is also affected by the volume fraction of the respective phases with a maximum observed around 30 vol.% of B2 phase, which agrees with the prediction given by the three-body element model. It was observed that the cubic B2 phase undergoes a martensitic transformation during deformation, resulting in a strong work hardening and a high fracture stress of these alloys. The GFA of the Ti-Cu -based alloys can be further increased by minor additions of Si. A maximum GFA is observed for additions of 1 and 0.5 at.% Si to binary Ti-Cu or quaternary Ti-Cu-Ni-Zr alloys, respectively. This optimum GFA results from the formation of a lower amount of highly stable Ti5Si3 precipitates, which act as nuclei for other crystalline phases, and the increased stability of the liquid and the supercooled liquid. The addition of Co has the opposite effect. It drastically decreases the GFA of Ti-Cu-Ni alloys and both the martensitic transformation temperature and their mechanical behaviour seem to correlate with the number and concentration of valence electrons of the B2 phase. The transformation temperature decreases by increasing the concentration of valence electrons. An excellent combination of high yield strength and large fracture strain occurs for Ti-Cu-Ni-Zr and Ti-Cu-Ni-Zr-Si alloys with a relatively low amount of CuZr, with a fracture strain in compression almost two times larger than the one usually observed for CuZr-based composites. For instance, the Ti45Cu39Ni11Zr5 alloy exhibit a yield strength of 1490±50 MPa combined with 23.7±0.5% of plastic strain. However, a reduced ductility was found for the CuZr-richer Ti-Cu-Ni-Zr compositions, which results from the precipitation of the brittle Cu2TiZr phase in the glassy matrix. The present study extends the concept of “shape memory BMG matrix composites” originally developed for CuZr-based alloys and delivers important insights into the correlation between phase formation and mechanical properties of this new family of high-strength TiCu-based alloys, which upon further optimization might be promising candidates for high-performance applications such as flow meters, sensors and micro- and mm-sized gears. / Auf Grund der hohen Elastizitätsgrenze, Festigkeiten, die nahe an der theoretischen Grenze liegen, sehr guten magnetischen Eigenschaften, sowie einer guten Korrosionsbeständigkeit erscheint der Einsatz massiver metallischer Gläser (BMG) vielversprechend in zahlreichen Gebieten, wie z.B. in Mikro-Getriebemotorteilen, Coriolis-Massendurchflussmessern, Drucksensoren, Speicherdrosseln und als Beschichtungsmaterialien. Der Einsatz dieser Materialien wird jedoch hauptsächlich durch ihre begrenzte makroskopische Duktilität bei Raumtemperatur eingeschränkt. Diese resultiert aus einer inhomogenen Verformung, die in schmalen Scherbändern konzentriert ist. Die unzureichende Duktilität kann durch das Einbringen einer zweiten, duktilen Phase in die Glas-Matrix verbessert werden, so dass Komposite gebildet werden. Diese Komposite weisen in der Regel immer noch hohe Festigkeiten auf, lassen sich aber gleichzeitig deutlich besser plastisch verformen. Es wurden bereits verschiedene Arten von massiven metallischen Glas-Matrix-Kompositen entwickelt. Jedoch konnte die plastische Verformbarkeit in Zug- oder Biegeversuchen nur in den Materialien erhöht werden, in denen sich die zweite Phase bei der Erstarrung ausscheidet. Unter diesen in-situ Kompositen konnte eine signifikante Duktilität lediglich für zwei Legierungstypen beobachtet werden: massive metallische Gläser auf TiZrBe- und auf CuZr-Basis. Die Ausscheidungen der kubischen β-(Ti,Zr) Phase wachsen dendritenartig in die Glas-Matrix, wohingegen sich in letzterem Legierungstypen sphärische Ausscheidungen der Formgedächtnislegierung, B2-CuZr, im Glas bilden. CuZr-Basislegierungen haben dabei den großen Vorteil, dass sie kein Be enthalten, welches toxisch ist. Außerdem weisen diese Komposite auch dank der Formgedächtnisphase eine starke Kaltverfestigung auf. Das Konzept, massive metallische Formgedächtnis-Glas-Matrix-Komposite herzustellen, um die mechanischen Eigenschaften zu optimieren, wurde bisher nur auf CuZr-Basislegierungen angewandt. Es soll mittels dieser Arbeit nun erforscht werden, ob dieses Konzept auf andere massive metallische Gläser übertragbar ist. Des Weiteren ist der Zusammenhang zwischen Gefüge, Phasenbildung und mechanischen Eigenschaften der Komposite noch nicht vollständig verstanden, insbesondere die Rolle der Ausscheidungen in Bezug auf die Scherbandbildung und die Spannungsverteilung in der Glas-Matrix. Das Ziel der vorliegenden Arbeit ist die Entwicklung einer neuen Klasse massiver, metallischer Formgedächtnis-Glas-Matrix Komposite um das Konzept, welches ursprünglich für CuZr-Basislegierungen entwickelt wurde, zu erweitern. Die thermischen und mechanischen Eigenschaften sollen mit dem Gefüge und der Phasenbildung in Beziehung gesetzt werden, um so die fundamentalen Verformungsmechanismen und ihre Ursachen besser zu verstehen. Der Ausgangspunkt bei der Herstellung neuer massiver metallischer Formgedächtnis-Glas-Matrix Komposite ist das pseudobinäre TiCu-TiNi-System. In diesem System konnten massive Glasproben mit einem kritischen Gießdurchmesser von circa 1 mm hergestellt werden und zwar in dem Zusammensezungsbereich, in dem die kubische Formgedächtnisphase, B2-TiNi, gebildet wird. Während der Abkühlung findet in diesen Kompositen bei etwa 325 K eine martensitische Umwandlung der B2-Phase zur orthorhombischen B19-TiNi Phase statt. B2- und B19-TiNi weisen eine gute Verformbarkeit von bis zu 30% bei Raumtemperatur unter Zugbelastung auf. Die hier erzeugten Ti-Cu, Ti-Cu-Ni, Ti-Cu-Ni-Zr, Ti-Cu-Ni-Zr-(Si) und Ti-Cu-Ni-Co-Legierungen basieren auf Literaturangaben und Vorhersagen bezüglich der Glasbildungsfähigkeit in diesen Systemen mittels λ+Δh1/2-Kriterium, welches die Auswirkungen der Atomgrößenunterschiede der Elemente und deren elektronische Wechselwirkung einbezieht. Die Proben wurden im Schmelzspinnverfahren (Bänder) und mittels Saugguss in einer Cu-Kokille (Stäbe und Bleche) hergestellt. Die Weiter- und Neuentwicklung von Legierungen, beginnt mit dem Ti-Cu-System. Die Glasbildungsfähigkeit in diesem binären System ist nur gering, so dass lediglich mikrometerdicke amorphe Bänder hergestellt werden können. Die Ergebnisse zeigen, dass der beste Glasbildner eine Zusammensetzung von etwa Ti50Cu50 hat. Die Glasbildungsfähigkeit von binären Legierungen kann durch die Zugabe von Ni weiter verbessert werden. Dies führte innerhalb dieser Arbeit zur Entwicklung neuer Ti-Cu-Ni Formgedächtnis-Glas-Matrix Komposite, in welchen die orthorhombische Martensitphase in der Glas-Matrix ausgeschieden wird. Diese ternären Legierungen zeigen eine hohe Zugfestigkeit in Kombination mit einer hohen Bruchdehnung. Beim Überschreiten einer Temperatur von etwa 320 K vollziehen die Ausscheidungen eine reversible martensitische Umwandlung vom B19- zum B2-Strukturtyp. Durch die amorphe Matrix wird die Hochtemperaturphase (B2 Phase) stabilisiert. Dies verursacht unterschiedliche Umwandlungstemperaturen im Kompositmaterial, die davon abhängig sind, ob die Ausscheidungen nur teilweise oder vollständig in der Matrix eingebettet sind. Die Verformung beginnt in der weichen kristallinen Phase, welche eine heterogene Spannungsverteilung in der Glas-Matrix erzeugt und eine hohe Dichte an Scherbändern in der Matrix verursacht. Die Ausscheidungen haben zudem die Funktion, die Ausbreitung der Scherbänder zu blockieren und das Versagen des Materials zu verzögern. Die Größe der Komposite ist jedoch auf Grund der geringen Glasbildungsfähigkeit auf einen Stabdurchmesser von ca. 1 mm begrenzt. Dies kann mit dem Zulegieren von CuZr verbessert werden. Es wurden hier auf diese Weise neue Ti-Cu-Ni-Zr Komposite entwickelt, deren Durchmesser zwischen 2 und 3 mm liegt. Diese bestehen hauptsächlich aus sphärischen Ausscheidungen der kubischen B2-(Ti,Zr)(Cu,Ni)- und der Glasphase. Die wechselseitige Beziehung zwischen der Streckgrenze und dem Volumenanteil der B2-Phase wurde im Detail untersucht. Für kristalline Volumenanteile kleiner als 30 Vol.-% folgt die Streckgrenze der Mischungsregel und für größere Volumenanteile dem „lasttragenden Modell“ (load bearing model). Die Bruchdehnung wird ebenfalls vom Volumenanteil der Phasen beeinflusst und zeigt ein Maximum bei etwa 30 Vol.-% an B2-Phase. Dies stimmt mit der Vorhersage des „Drei-Element-Modells“ überein. Es wurde festgestellt dass die kubische B2-Phase während der Verformung eine martensitische Umwandlung durchführt, was die starke Kaltverfestigung und die hohen Bruchspannungen dieser Legierungen zur Folge hat. Die Glasbildungsfähigkeit von TiCu-Basislegierungen kann im Gegenzug weiterhin durch geringe Si-Zusätze gesteigert werden. Hierbei tritt jeweils ein Maximum bei Zusätzen von 1 und 0,5 at-% Si zu binären Ti-Cu- oder zu quarternären Ti-Cu-Ni-Zr-Legierung auf. Das Optimum der Glasbildungsfähigkeit ist das Ergebnis sowohl eines geringeren Anteils hochschmelzender Ti5Si3-Ausscheidungen, die als Keimbildner für andere kristalline Phasen dienen, als auch der erhöhten Stabilität der Schmelze sowie der unterkühlten Schmelze. Der Zusatz von Co wiederum hat einen gegenteiligen Effekt. Er vermindert die Glasbildungsfähigkeit von Ti-Cu-Ni-Legierungen drastisch. Zudem scheinen sowohl die martensitische Umwandlungstemperatur als auch das mechanische Verhalten mit der Zahl und Konzentration der Valenzelektronen der B2-Phase zu korrelieren. Die Umwandlungstemperatur sinkt mit steigender Valenzelektronenkonzentration. Eine ausgezeichnete Kombination von hoher Streckgrenze und Bruchdehnung tritt für die Legierungen Ti-Cu-Ni-Zr und Ti-Cu-Ni-Zr-Si mit einem relativ geringen CuZr-Anteil auf. Die Bruchdehnung unter Druck ist fast zweimal höher als es für CuZr-Basis-Komposite gewöhnlich beobachtet worden ist. Die Legierung Ti45Cu39Ni11Zr5 zeigt beispielsweise eine Streckgrenze von 1490±50 MPa in Kombination mit einer plastischen Dehnung von 23,7±0,5%. Für die CuZr-reicheren Ti-Cu-Ni-Zr Zusammensetzungen wurde jedoch eine geringere Duktilität festgestellt, was das Resultat spröder Cu2TiZr-Ausscheidungen in der Glas-Matrix ist. Die vorliegende Arbeit erweitert folglich das Konzept der „Formgedächtnis-Glas-Matrix Komposite“, welches bisher auf CuZr-basierte Legierungen beschränkt war und liefert wichtige Einblicke in die Beziehung zwischen Phasenbildung und mechanischen Eigenschaften der neuen Klasse hochfester TiCu-Basislegierungen, welche nach weiterer Optimierung vielversprechend sein könnten für Hochleistungsanwendungen wie Durchflussmesser, Sensoren und mikrometer- und mm-große Antriebe.
7

Powder metallurgy of shape memory bulk metallic glass composites: synthesis, properties and deformation mechanism

He, Tianbing 08 November 2021 (has links)
The synthesis of in-situ bulk metallic glass composites (BMGCs) with crystals that undergo a martensitic transformation under loading is possibly the most effective method to improve the plasticity of metallic glasses at room temperature. These martensitic or shape memory BMGCs are typically fabricated via solidification of glass-forming melts, which requires the meticulous selection of the chemical composition and the proper choice of the processing parameters (particularly the cooling rate) in order to ensure that the glassy matrix coexists with the desired amount of austenitic phase having suitable morphology and characteristics. Unfortunately, a relatively limited number of alloy systems, where austenite and glassy matrix coexist over a wide range of compositions, is available. Additionally, the necessity for rapid heat extraction and the corresponding high cooling rates essential for glass formation by melt solidification set an inherent limit to the achievable dimensions of BMGs and BMGCs specimens. The aim of this thesis is to study the effectiveness of powder metallurgy as an alternative to solidification for the synthesis of shape memory BMGCs. Ni50.6Ti49.4 and Zr48Cu36Al8Ag8 metallic glass powders were selected as the constituents of the composites because they have been extensively investigated and represent well the characteristic behavior of metallic glass and shape memory phases. BMGCs with different volume fractions of NiTi phase were fabricated using pressure-assisted sintering via hot pressing and their microstructure, mechanical properties and deformation mechanism were investigated. Particular focus was placed upon identifying the individual contributions of the martensitic transformation and shear band formation to plasticity as well as their mutual interaction at different length scales using a multidisciplinary approach involving experiments and simulations. BMG composites were synthesized by hot pressing of powder mixtures consisting of Zr48Cu36Al8Ag8 metallic glass and different amounts of Ni50.6Ti49.4 particles (10, 20, 40 and 60 vol.%) using the optimized consolidation parameters (temperature-time-pressure) determined for the monolithic BMG. All composites are characterized by a relatively uniform particle distribution and good interface bonding without any sign of reaction between the metallic glass and NiTi. The NiTi particles are progressively less isolated with increasing volume fraction of NiTi up to 40 % and, for the BMGC with 60 vol.% NiTi, the glassy particles are no longer connected and the NiTi phase becomes the continuous matrix. This is not a trivial achievement as the change of matrix while maintaining the structure of the constituent phases would not be easily obtained by solidification of melts with such different compositions. The size of the samples (10 mm diameter and 9 - 11 mm height) is larger than the characteristic BMGCs synthesized by casting and can, in principle, be scaled up to larger dimensions, demonstrating the effectiveness of this approach for overcoming the size limitation inherent to glass formation via solidification. In contrast to the monolithic BMG, which does not show any sign of plasticity, the BMGCs exhibit macroscopic plastic deformation that progressively increases with increasing NiTi content along with distinct strain-hardening. The BMG composites have similar fracture strength, which is comparable with the monolithic BMG, and exhibit a distinct double yield behavior, similar to shape memory BMGCs fabricated by casting. The deformed BMGCs exhibit a high density of shear bands, again in agreement with what observed for similar BMGCs fabricated by casting. These findings not only demonstrate that BMGCs with tunable microstructures and thus with optimized deformability can be synthesized by pressure-assisted sintering but, thanks to the phase stability of the components across such a wide range of compositions, also offer an excellent platform to examine fundamental aspects in the field of martensitic BMGCs. The confining stress exerted by the surrounding glassy matrix was quantified at the macroscale via a hybrid Voigt-Reuss mixture, which considers intermediate weighted combinations of stiff and compliant behaviors. In this way, the macroscopic stress required to initiate the martensitic transformation from B2 to B19´ can be described with rather good accuracy. The confining effect was further investigated by in-situ high-energy X-ray diffraction to have access to the strain tensor of the B2 phase as a function of loading. The results indicate that the confining stress along the direction perpendicular to the loading axis is particularly strong because the expansion of the B2 phase is constrained by the elastic matrix. A mechanism responsible for shear band formation in shape memory BMGCs is proposed. The stress field generated by the martensitic transformation in the contiguous glass would activate the adjacent shear transformation zone (STZ, the elementary units of plasticity in BMGs). The stress field induced by the activated STZ in the surrounding material then triggers the activation of the following STZs along the path of a potential shear band, in an autocatalytic process resembling the domino effect. The shear band formed in this way propagates through the glassy phase and, when impinging a B2 particle, the associated stress field would locally trigger the martensitic transformation, starting again the process. Molecular dynamics (MD) simulations of a martensitic BMGC show that the structural perturbation generated by the martensitic transformation is indeed transmitted to the adjacent glassy matrix and, in turn, to the developing shear band, in agreement with the proposed mechanism. The individual contribution of the glassy phase to the residual strain after each loading-unloading cycle was quantified assuming that the NiTi phase behaves in the same manner across the different specimens. The glass contribution was then correlated to the shear band density to obtain the plastic strain resulting from shear banding for a given amount of NiTi phase, a quantity that could be effectively used in the design of plastically-deformable BMGCs with shape memory particles. The martensitic transformation in the composites becomes progressively more irreversible with increasing strain. A large contribution to the martensite stabilization may come from the residual stress induced by the shear bands, in accordance with the finite element method (FEM) simulations, showing that residual stresses in the composites suppress the reverse transformation after unloading. These finding corroborates the hypothesis that the residual elastic stress field generated by the shear bands may be fundamental for stabilizing the martensitic phase by restraining the atoms at the glass-crystal interface from rearranging back to form austenite. This process can be reversed by proper heat treatment. The findings presented in this thesis offer the opportunity to synthesize shape memory BMG composites with enhanced plasticity and strain-hardening capability along with larger dimensions than those typically achieved by solidification. The powder metallurgy approach provides the necessary versatility in materials design and resulting properties of the composites via the control over the fundamental microstructural features, such as volume fraction, size, morphology and distribution of the second phase. Additionally, materials processing in the solid state gives a virtually infinite choice among the possible composite components, a degree of freedom not usually given when processing via solidification.:Abstract iii Kurzfassung vii Motivation and objectives xi 1 Theoretical background and state-of-the-art 1 1.1 Bulk metallic glasses (BMGs) 1 1.1.1 Formation of metallic glasses 2 1.1.2 Mechanical properties of BMGs 5 1.1.3 Shear bands in metallic glasses 8 1.2 Bulk metallic glass matrix composites 19 1.2.1 Fabrication of BMG composites 20 1.2.2 In-situ BMG composites 27 1.2.3 Ex-situ BMG composites 43 2 Experiments and simulations 57 2.1 Sample preparation 57 2.1.1 Starting materials 57 2.1.2 Powder mixing 59 2.1.3 Powder consolidation 60 2.2 Materials characterization 61 2.2.1 Composition analysis 61 2.2.2 Laboratory X-ray diffraction 61 2.2.3 High-energy X-ray diffraction and strain analysis 62 2.2.4 Viscosity measurements 63 2.2.5 Differential scanning calorimetry 64 2.2.6 Density measurements 64 2.2.7 X-ray computed tomography 65 2.2.8 Optical microscopy and scanning electron microscopy 65 2.2.9 Transmission electron microscopy 66 2.2.10 Elastic constants measurements 66 2.2.11 Mechanical tests 67 2.3 Molecular dynamic simulations 67 2.4 Finite element simulations 68 3 Pressure-assisted sintering of single-phase Zr48Cu36Al8Ag8 metallic glass and Ni50.6Ti49.4 powders 73 3.1 Synthesis and properties of single-phase Zr48Cu36Al8Ag8 bulk metallic glass 73 3.2 Synthesis and properties of single-phase Ni50.6Ti49.4 shape memory alloy 80 4 Pressure-assisted sintering of BMG composites with shape memory crystals: Microstructure and mechanical properties 87 4.1 Microstructure of BMG composites 87 4.2 Effect of NiTi volume fraction on mechanical properties 90 4.3 Effect of confinement of the glassy phase on the martensitic transformation 95 5 Deformation mechanism of shape memory BMG composites 101 5.1 Martensitic transformation and shear band formation 101 5.2 Mechanism of shear band formation in shape memory BMG composites 107 6 Reversibility of the martensitic transformation in shape memory BMG composites 113 6.1 Martensite stabilization in NiTi alloy and BMG composites 113 6.2 Simulation of the martensite stabilization effect in BMG composites 119 6.3 Effect of heat treatment on the martensitic reverse transformation 121 7 Summary and outlook 125 References 131 Acknowledgements 155 Publications 157 Erklärung 159
8

Phase formation, thermal stability and mechanical behaviour of TiCu-based alloys

Gargarella, Piter 10 February 2014 (has links)
The large elastic limit, the strength close to the theoretical limit, the excellent magnetic properties and good corrosion resistance of bulk metallic glasses (BMGs) make them promising for several applications such as micro-geared motor parts, pressure sensors, Coriolis flow meters, power inductors and coating materials. The main limitation of these materials is their reduced macroscopic ductility at room temperature, resulting from an inhomogeneous deformation concentrated in narrows shear bands. The poor ductility can be overcome by the incorporation of a ductile second phase in the glassy matrix to form composites, which exhibit a better balance between strength and ductility. Different types of BMG composites have been developed to date but considerable plastic strain during tensile or bending tests has been only obtained for composites with in-situ formation of the second phase during solidification. Among these in-situ formed composites, significant tensile ductility has been only observed for two types of alloys so far: TiZrBe-based and CuZr-based BMG composites. The former precipitate dendrites of the cubic β-(Ti,Zr) phase in the glass matrix, whereas the latter combine spherical precipitates of the cubic B2-CuZr shape memory phase within the glass. The CuZr-based BMG composites have certain advantages over the TiZrBe-based composites such as the absence of Be, which is a toxic element, and exhibit a strong work-hardening behaviour linked to the presence of the shape memory phase. This concept of “shape memory” BMG composites has been only applied to CuZr-based alloys so far. It is worth investigating if such a concept can be also used to enhance the plasticity of other BMGs. Additionally, the correlation between microstructure, phase formation and mechanical properties of these composites is still not fully understood, especially the role of the precipitates regarding shear band multiplication as well as the stress distribution in the glassy matrix, which should be significantly influenced by the precipitates. The aim of the present work is to develop a new family of shape memory bulk metallic glass composites in order to extend the concept initially developed for CuZr-based alloys. Their thermal and mechanical properties shall be correlated with the microstructure and phase formation in order to gain a deeper understanding of the fundamental deformation mechanisms and thermal behaviour. A candidate to form new shape memory BMG composites is the pseudo-binary TiCu-TiNi system because bulk glassy samples with a critical casting thickness of around 1 mm have been obtained in the compositional region where the cubic shape memory phase, B2-TiNi, precipitates. This phase undergoes a martensitic transformation to the orthorhombic B19-TiNi during cooling at around 325 K. The B2- and B19-TiNi exhibit an extensive deformation at room temperature up to 30% during tensile loading. Compositions in the Ti-Cu, Ti-Cu-Ni, Ti-Cu-Ni-Zr, Ti-Cu-Ni-Zr-(Si) and Ti-Cu-Ni-Co systems were selected based on literature data and on a recently proposed λ+Δh1/2 criterion, which considers the effect of atomic size mismatch between the elements and their electronic interaction. Samples were then produced by melt spinning (ribbons) and Cu-mould suction casting (rods and plates). The investigation started in the Ti-Cu system. A low glass-forming ability (GFA) was observed with formation of amorphous phase only in micrometer-thick ribbons and the results showed that the best glass former is located around Ti50Cu50. Considering that the GFA of the binary alloys can be further improved with additions of Ni, new Ti-Cu-Ni shape memory BMG composites were then developed in which the orthorhombic Ti(Ni,Cu) martensite precipitates in the glassy matrix. These alloys exhibit a high yield strength combined with large fracture strain and the precipitates show a reversible martensitic transformation from B19 to B2-type structure at a critical temperature around 320 K (during heating). The amorphous matrix stabilizes the high-temperature phase (B2 phase), which causes different transformation temperatures depending on whether the precipitates are partially or completely embedded in the glassy matrix. The deformation starts in the softer, crystalline phase, which generates a heterogeneous stress distribution in the glassy matrix and causes the formation of multiple shear bands. The precipitates also have the important function to block the fast movement of shear bands and hence retard fracture. However, the size of such composites is limited to 1 mm diameter rods because of their low GFA, which can be further improved by adding CuZr. New Ti-Cu-Ni-Zr composites with diameter ranging from 2 to 3 mm were developed, which consist mainly of spherical precipitates of the cubic B2-(Ti,Zr)(Cu,Ni) and the glassy phase. The interrelation between composite strength and volume fraction of B2 phase was analysed in detail, which follows the rule of mixture for values lower than 30 vol.% or the load-bearing model for higher values. The fracture strain is also affected by the volume fraction of the respective phases with a maximum observed around 30 vol.% of B2 phase, which agrees with the prediction given by the three-body element model. It was observed that the cubic B2 phase undergoes a martensitic transformation during deformation, resulting in a strong work hardening and a high fracture stress of these alloys. The GFA of the Ti-Cu -based alloys can be further increased by minor additions of Si. A maximum GFA is observed for additions of 1 and 0.5 at.% Si to binary Ti-Cu or quaternary Ti-Cu-Ni-Zr alloys, respectively. This optimum GFA results from the formation of a lower amount of highly stable Ti5Si3 precipitates, which act as nuclei for other crystalline phases, and the increased stability of the liquid and the supercooled liquid. The addition of Co has the opposite effect. It drastically decreases the GFA of Ti-Cu-Ni alloys and both the martensitic transformation temperature and their mechanical behaviour seem to correlate with the number and concentration of valence electrons of the B2 phase. The transformation temperature decreases by increasing the concentration of valence electrons. An excellent combination of high yield strength and large fracture strain occurs for Ti-Cu-Ni-Zr and Ti-Cu-Ni-Zr-Si alloys with a relatively low amount of CuZr, with a fracture strain in compression almost two times larger than the one usually observed for CuZr-based composites. For instance, the Ti45Cu39Ni11Zr5 alloy exhibit a yield strength of 1490±50 MPa combined with 23.7±0.5% of plastic strain. However, a reduced ductility was found for the CuZr-richer Ti-Cu-Ni-Zr compositions, which results from the precipitation of the brittle Cu2TiZr phase in the glassy matrix. The present study extends the concept of “shape memory BMG matrix composites” originally developed for CuZr-based alloys and delivers important insights into the correlation between phase formation and mechanical properties of this new family of high-strength TiCu-based alloys, which upon further optimization might be promising candidates for high-performance applications such as flow meters, sensors and micro- and mm-sized gears. / Auf Grund der hohen Elastizitätsgrenze, Festigkeiten, die nahe an der theoretischen Grenze liegen, sehr guten magnetischen Eigenschaften, sowie einer guten Korrosionsbeständigkeit erscheint der Einsatz massiver metallischer Gläser (BMG) vielversprechend in zahlreichen Gebieten, wie z.B. in Mikro-Getriebemotorteilen, Coriolis-Massendurchflussmessern, Drucksensoren, Speicherdrosseln und als Beschichtungsmaterialien. Der Einsatz dieser Materialien wird jedoch hauptsächlich durch ihre begrenzte makroskopische Duktilität bei Raumtemperatur eingeschränkt. Diese resultiert aus einer inhomogenen Verformung, die in schmalen Scherbändern konzentriert ist. Die unzureichende Duktilität kann durch das Einbringen einer zweiten, duktilen Phase in die Glas-Matrix verbessert werden, so dass Komposite gebildet werden. Diese Komposite weisen in der Regel immer noch hohe Festigkeiten auf, lassen sich aber gleichzeitig deutlich besser plastisch verformen. Es wurden bereits verschiedene Arten von massiven metallischen Glas-Matrix-Kompositen entwickelt. Jedoch konnte die plastische Verformbarkeit in Zug- oder Biegeversuchen nur in den Materialien erhöht werden, in denen sich die zweite Phase bei der Erstarrung ausscheidet. Unter diesen in-situ Kompositen konnte eine signifikante Duktilität lediglich für zwei Legierungstypen beobachtet werden: massive metallische Gläser auf TiZrBe- und auf CuZr-Basis. Die Ausscheidungen der kubischen β-(Ti,Zr) Phase wachsen dendritenartig in die Glas-Matrix, wohingegen sich in letzterem Legierungstypen sphärische Ausscheidungen der Formgedächtnislegierung, B2-CuZr, im Glas bilden. CuZr-Basislegierungen haben dabei den großen Vorteil, dass sie kein Be enthalten, welches toxisch ist. Außerdem weisen diese Komposite auch dank der Formgedächtnisphase eine starke Kaltverfestigung auf. Das Konzept, massive metallische Formgedächtnis-Glas-Matrix-Komposite herzustellen, um die mechanischen Eigenschaften zu optimieren, wurde bisher nur auf CuZr-Basislegierungen angewandt. Es soll mittels dieser Arbeit nun erforscht werden, ob dieses Konzept auf andere massive metallische Gläser übertragbar ist. Des Weiteren ist der Zusammenhang zwischen Gefüge, Phasenbildung und mechanischen Eigenschaften der Komposite noch nicht vollständig verstanden, insbesondere die Rolle der Ausscheidungen in Bezug auf die Scherbandbildung und die Spannungsverteilung in der Glas-Matrix. Das Ziel der vorliegenden Arbeit ist die Entwicklung einer neuen Klasse massiver, metallischer Formgedächtnis-Glas-Matrix Komposite um das Konzept, welches ursprünglich für CuZr-Basislegierungen entwickelt wurde, zu erweitern. Die thermischen und mechanischen Eigenschaften sollen mit dem Gefüge und der Phasenbildung in Beziehung gesetzt werden, um so die fundamentalen Verformungsmechanismen und ihre Ursachen besser zu verstehen. Der Ausgangspunkt bei der Herstellung neuer massiver metallischer Formgedächtnis-Glas-Matrix Komposite ist das pseudobinäre TiCu-TiNi-System. In diesem System konnten massive Glasproben mit einem kritischen Gießdurchmesser von circa 1 mm hergestellt werden und zwar in dem Zusammensezungsbereich, in dem die kubische Formgedächtnisphase, B2-TiNi, gebildet wird. Während der Abkühlung findet in diesen Kompositen bei etwa 325 K eine martensitische Umwandlung der B2-Phase zur orthorhombischen B19-TiNi Phase statt. B2- und B19-TiNi weisen eine gute Verformbarkeit von bis zu 30% bei Raumtemperatur unter Zugbelastung auf. Die hier erzeugten Ti-Cu, Ti-Cu-Ni, Ti-Cu-Ni-Zr, Ti-Cu-Ni-Zr-(Si) und Ti-Cu-Ni-Co-Legierungen basieren auf Literaturangaben und Vorhersagen bezüglich der Glasbildungsfähigkeit in diesen Systemen mittels λ+Δh1/2-Kriterium, welches die Auswirkungen der Atomgrößenunterschiede der Elemente und deren elektronische Wechselwirkung einbezieht. Die Proben wurden im Schmelzspinnverfahren (Bänder) und mittels Saugguss in einer Cu-Kokille (Stäbe und Bleche) hergestellt. Die Weiter- und Neuentwicklung von Legierungen, beginnt mit dem Ti-Cu-System. Die Glasbildungsfähigkeit in diesem binären System ist nur gering, so dass lediglich mikrometerdicke amorphe Bänder hergestellt werden können. Die Ergebnisse zeigen, dass der beste Glasbildner eine Zusammensetzung von etwa Ti50Cu50 hat. Die Glasbildungsfähigkeit von binären Legierungen kann durch die Zugabe von Ni weiter verbessert werden. Dies führte innerhalb dieser Arbeit zur Entwicklung neuer Ti-Cu-Ni Formgedächtnis-Glas-Matrix Komposite, in welchen die orthorhombische Martensitphase in der Glas-Matrix ausgeschieden wird. Diese ternären Legierungen zeigen eine hohe Zugfestigkeit in Kombination mit einer hohen Bruchdehnung. Beim Überschreiten einer Temperatur von etwa 320 K vollziehen die Ausscheidungen eine reversible martensitische Umwandlung vom B19- zum B2-Strukturtyp. Durch die amorphe Matrix wird die Hochtemperaturphase (B2 Phase) stabilisiert. Dies verursacht unterschiedliche Umwandlungstemperaturen im Kompositmaterial, die davon abhängig sind, ob die Ausscheidungen nur teilweise oder vollständig in der Matrix eingebettet sind. Die Verformung beginnt in der weichen kristallinen Phase, welche eine heterogene Spannungsverteilung in der Glas-Matrix erzeugt und eine hohe Dichte an Scherbändern in der Matrix verursacht. Die Ausscheidungen haben zudem die Funktion, die Ausbreitung der Scherbänder zu blockieren und das Versagen des Materials zu verzögern. Die Größe der Komposite ist jedoch auf Grund der geringen Glasbildungsfähigkeit auf einen Stabdurchmesser von ca. 1 mm begrenzt. Dies kann mit dem Zulegieren von CuZr verbessert werden. Es wurden hier auf diese Weise neue Ti-Cu-Ni-Zr Komposite entwickelt, deren Durchmesser zwischen 2 und 3 mm liegt. Diese bestehen hauptsächlich aus sphärischen Ausscheidungen der kubischen B2-(Ti,Zr)(Cu,Ni)- und der Glasphase. Die wechselseitige Beziehung zwischen der Streckgrenze und dem Volumenanteil der B2-Phase wurde im Detail untersucht. Für kristalline Volumenanteile kleiner als 30 Vol.-% folgt die Streckgrenze der Mischungsregel und für größere Volumenanteile dem „lasttragenden Modell“ (load bearing model). Die Bruchdehnung wird ebenfalls vom Volumenanteil der Phasen beeinflusst und zeigt ein Maximum bei etwa 30 Vol.-% an B2-Phase. Dies stimmt mit der Vorhersage des „Drei-Element-Modells“ überein. Es wurde festgestellt dass die kubische B2-Phase während der Verformung eine martensitische Umwandlung durchführt, was die starke Kaltverfestigung und die hohen Bruchspannungen dieser Legierungen zur Folge hat. Die Glasbildungsfähigkeit von TiCu-Basislegierungen kann im Gegenzug weiterhin durch geringe Si-Zusätze gesteigert werden. Hierbei tritt jeweils ein Maximum bei Zusätzen von 1 und 0,5 at-% Si zu binären Ti-Cu- oder zu quarternären Ti-Cu-Ni-Zr-Legierung auf. Das Optimum der Glasbildungsfähigkeit ist das Ergebnis sowohl eines geringeren Anteils hochschmelzender Ti5Si3-Ausscheidungen, die als Keimbildner für andere kristalline Phasen dienen, als auch der erhöhten Stabilität der Schmelze sowie der unterkühlten Schmelze. Der Zusatz von Co wiederum hat einen gegenteiligen Effekt. Er vermindert die Glasbildungsfähigkeit von Ti-Cu-Ni-Legierungen drastisch. Zudem scheinen sowohl die martensitische Umwandlungstemperatur als auch das mechanische Verhalten mit der Zahl und Konzentration der Valenzelektronen der B2-Phase zu korrelieren. Die Umwandlungstemperatur sinkt mit steigender Valenzelektronenkonzentration. Eine ausgezeichnete Kombination von hoher Streckgrenze und Bruchdehnung tritt für die Legierungen Ti-Cu-Ni-Zr und Ti-Cu-Ni-Zr-Si mit einem relativ geringen CuZr-Anteil auf. Die Bruchdehnung unter Druck ist fast zweimal höher als es für CuZr-Basis-Komposite gewöhnlich beobachtet worden ist. Die Legierung Ti45Cu39Ni11Zr5 zeigt beispielsweise eine Streckgrenze von 1490±50 MPa in Kombination mit einer plastischen Dehnung von 23,7±0,5%. Für die CuZr-reicheren Ti-Cu-Ni-Zr Zusammensetzungen wurde jedoch eine geringere Duktilität festgestellt, was das Resultat spröder Cu2TiZr-Ausscheidungen in der Glas-Matrix ist. Die vorliegende Arbeit erweitert folglich das Konzept der „Formgedächtnis-Glas-Matrix Komposite“, welches bisher auf CuZr-basierte Legierungen beschränkt war und liefert wichtige Einblicke in die Beziehung zwischen Phasenbildung und mechanischen Eigenschaften der neuen Klasse hochfester TiCu-Basislegierungen, welche nach weiterer Optimierung vielversprechend sein könnten für Hochleistungsanwendungen wie Durchflussmesser, Sensoren und mikrometer- und mm-große Antriebe.
9

Synthesis and Characterization of Bulk Metallic Glasses, Composites and Hybrid Porous Structures by Powder Metallurgy of Metallic Glassy Powders

Kim, Jin Young 31 March 2015 (has links)
Metallic glasses exhibit many attractive attributes such as outstanding mechanical, magnetic, and chemical properties. Due to the absence of crystal defects, metallic glasses display remarkable mechanical properties including higher specific strength than crystalline alloys, high hardness and larger fracture resistance than ceramics. The technological breakthrough of metallic glasses, however, has been greatly hindered by the limited plastic strain to failure. Thus, several strategies have been employed to improve the intrinsic and extrinsic effects on the flow behavior of metallic glasses with respect to their fracture toughness and overall plastic strain. One of the suggested strategies is the production of a composite consisting of the brittle metallic glass along with a ductile second phase that either acts as an active carrier of plastic strain or passively enhances the multiplication of shear bands via shear-band splitting . Another approach for increasing plastic deformation consists of introducing pores as a gaseous second phase into the material. The pores are similarly effective in delaying catastrophic failure resulting from shear band localization. In metallic glasses with high porosity, propagation of shear bands can even become stable, enabling macroscopic compressive strains of more than 80 % without fracture. In this thesis, Ni59Zr20Ti16Si2Sn3 glass and its composites have been fabricated using mechanical milling and consolidation by hot pressing followed by extrusion of Ni59Zr20Ti16Si2Sn3 metallic glass powder or Ni59Zr20Ti16Si2Sn3 metallic glass powder reinforced with 40 vol.% of brass particles to obtained bulk composite materials with high strength and enhanced compressive plasticity and to generate porous structure in Ni59Zr20Ti16Si2Sn3 metallic glass using selective dissolution. The brass–glass powder mixtures to be consolidated were prepared using two different approaches: manual blending and ball milling to properly vary size and morphology of the second phase in the composites. Powder consolidation was carried out at temperatures within the supercooled Liquid (SCL) region, where the glassy phase displays a strong decrease of viscosity, with using the sintering parameters which were chosen after analysis of the crystallization behavior of the glassy phase to avoid its crystallization during consolidation. Ball milling has a significant effect on the microstructure of the powder mixtures: a refined layered structure consisting of alternating layer of glass and brass is formed as a result of the mechanical deformation. However, ball milling reduces the amorphous content of the composite powders due to mechanically induced crystallization and reaction of the glass and brass phases during heating. In addition, the milling of the composite powders and the following consolidation step reduces the amorphous content by about 50 %. The bulk amorphous Ni59Zr20Ti16Si2Sn3 alloy synthesized by hot pressing exhibits higher strength (2.28 GPa) than that of the as-cast bulk amorphous Ni59Zr20Ti16Si2Sn3 alloy (2.2 GPa). The mechanical behavior of the glass-brass composites is significantly affected by the control of the microstructure between the reinforcement and the nano-grained matrix phase through the different methods used for the preparation of the powder mixtures. The strength of the composites increases from 500 MPa for pure brass to 740 and 925 MPa for the composites with 40 and 60 vol.% glass reinforcement prepared by manual blending. The strength further increases to 1240 and 1640 MPa for the corresponding composites produced by ball milling caused by the remarkable effect of the matrix ligament size on the strengthening of the composites. The porous metallic glass was obtained by the selective dissolution in a HNO3 solution of the fugitive brass phase in the Ni59Zr20Ti16Si2Sn3 composite. The microstructure of the porous samples consists of highly elongated layered pore structures and/or irregularly shaped pores. The average size of the pores depends on the processing parameters and can be varied in the range of 0.4–15 µm. Additional porous samples were prepared from different extruded composite precursors of blended and milled powder mixtures. This leads to customized hybrid porous structures consisting of a combination of large and small pores. The specific surface area of the porous Ni-based metallic glass powder measured by the BET method is 16 m2/g, while the as-atomized Ni59Zr20Ti16Si2Sn3 powder has a specific surface area of 0.29 m2/g. This indicates a mechanical milling induced enhancement in surface area by refinement of the fugitive brass phase. However the specific surface area of the porous Ni-based metallic glass obtained from as-extruded precursors is 10 m2/g caused by a breakdown of the porous structure during selective dissolution of the nano-scale fugitive phase. Although milling of the present composite powders and the following consolidation step reduces the amorphous content by about 50 %, through the use of glassy phases with improved stability against mechanically induced crystallization along with reduced affinity with the fugitive phase to avoid unwanted reactions during processing, this approach using powder metallurgical offers the possibility to produce highly active porous bulk materials for functional applications, such as catalysis, which require the fast transport of reactants and products provided by the large pores along with high catalytic activity ensured by the large surface area characterizing the small pores. Accordingly, gas absorption ability tests of porous Ni-based metallic glass powders have been performed in order to evaluate the possibility of replacement of conventional support materials. From these first tests it can be conclude that additional opportunities should exist for nano-porous MGs with designed architecture of porous structures that are tailored to specific functional applications. / Metallische Gläser weisen viele attraktive mechanische, magnetische und chemische Eigenschaften auf. Aufgrund der fehlenden Kristallstruktur zeigen metallische Gläser bemerkenswerte mechanische Eigenschaften, einschließlich höherer spezifischer Festigkeit, höherer Härte und größerer Bruchfestigkeit als Keramik. Der technologischen Durchbruch metallischer Gläser wird jedoch bis heute stark von ihremspröden Bruchverhalten behindert. Deshalb wurden verschiedene Herstellungsverfahren entwirkt, um sowohl die plastische Verformung der metallischer Massivgläser zu erhöhen, als auch um die mechanischen Eigenschaften generell zu verbessern. Eine mögliche Methode, zur Erhöhung der Plastizität und zur Beeinflussung der mechanischen Eigenschaften der metallischen Gläser ist der Einbau zweiter Phasen, wie z.B. durch Fremdpartikel Verstärkung oder Poren in Kompositen. Die Scherband bewegung wird durch die Wechselwirkung mit zweiten Phasen behindert, und gleichzeitig werden durch die in den Grenzflächen entstehenden Spannungsspitzen zwischen der zweiten Phase und der Matrix neue Scherbänder initiert. Dies führt zur Bildung einer Vielzahl von Scherbändern, was eine höhere plastische Dehnung zur Folge hat, da die Deformationsenergie auf ein größeres Volumen verteilt wird. In der vorliegenden Arbeit wurden Ni59Zr20Ti16Si2Sn3 Massivglas und mit Messing- verstärkte Komposite durch Kugelmahlen und Heißpressen mit anschließender Extrusion von Ni59Zr20Ti16Si2Sn3 Pulver oder Ni59Zr20Ti16Si2Sn3 Pulver mit 40 vol.% Messing Partikeln hergestellt. Neben der Herstellung der Ni59Zr20Ti16Si2Sn3 Komposite mit Messing Partikeln, wurden auch Ni59Zr20Ti16Si2Sn3 Komposite mit definierter Porösität durch die selektive Auflösung der zweiten Phase erzeugt. Die verwendete Mischung von Messing und metallischem Glaspulver wurde über zwei verschiedene Ansätzen hergestellt: die Pulver wurden manuell gemischt oder gemahlen, um die optimale Größe und Morphologie der zweiten Phase in den Komositen zu erzeugen. Das Sintern der Pulver erfolgte bei Temperaturen im Bereich der unterkühlten Schmelze, wobei die Legierung eine starke Abnahme der Viskosität zeigte, mit Hilfe optimierter Sinterparameter, die nach der Analyse des Kristallisationsverhaltens der gläsernen Phase ausgewählt wurden, um deren Kristallisation während der Konsolidierung zu vermeiden. Kugelmahlen hat einen signifikanten Einfluss auf die Mikrostruktur der gemahlenen Pulver: Eine verfeinerte Lamellare Struktur, teils bestehend aus Glas und teils aus Messing, wird durch mechanische Verformung gebildet. Kugelmahlen reduziert jedoch den amorphen Anteil der Komposite durch mechanische induzierte Kristallisation und die Reaktion der Glas- und Messing- Phasen durch Erwärmung. Das Kugelmahlen der Komposite (Pulver) und das darauf folgende Sintern führte zur eine Absenkung der freien Enthalpie der amorphen Phase um ca. 50%. Ni59Zr20Ti16Si2Sn3 metallische Massivgläser, welche durch Heißpressen hergestellt werden, weisen eine höhere Streckgrenze von 2.28 GPa als das gegossene Ni59Zr20Ti16Si2Sn3 Massivglas (2.2 GPa) auf. Die mechanischen Eigenschaften der mit Messing Ni59Zr20 Ti16Si2Sn3 verstärkten Komposite sind abhängig von der Kontrolle der Mikrostruktur zwischen den zweiten Phasen und der Matrixphase durch die verschiedenen Verfahren zur Herstellung von Pulvermischungen. Die Festigkeiten der Komposite, welche durch Handmischen und Heißpressen mit nachfolgender Extrusion hergestellt wurden, erhöhten sich von 500 MPa für reines Messing bis auf 740 und 925 MPa für die Komposite mit 40 und 60 Vol. % Glaspartikel- Verstärkung durch Handmischen. Die Festigkeiten erhöhten sich nochmals auf 1240 und 1640 MPa für die Komposite mit 40 und 60 Vol. % an Glaspartikel-Verstärkung mit lamellare Stuktur, die durch Kugelmahlen hergestellt würden. Die Ursache hier für liegt in der Wirkung der Ligamentabmessungen zwischen den Matrixbestandteilen hinsichtlich der Verfestigung der Komposite. Die Porösität im metallischen Glas wurde durch die selektive Auflösung der flüchtigen Messingphasen in den Kompositen mit Salpetersäure-Lösung erhalten. Die Mikrostuktur der porösen metallischen Gläser besteht aus stark elongiert geschichteten Porenstrukturen und/oder unregelmäßig geformten Poren. Die durchschnittliche Größe einer Pore hängt von den behandelnden Parametern ab und kann von 0.4–15 µm variieren. Weitere poröse Proben wurden ausgehend von verschiedenen extrudierten Komposit-Precursoren aus handgemischten und kugelgemahlenen Pulvermixturen erzeugt. Dies führte zu angepassten hybrid-porösen Strukturen bestehend aus einer Kombination von großen und kleinen Poren. Die spezifische Oberfläche des porösen Glaspulvers gemessen mit Hilfe der BET- Methode, beträgt 16m2/g, wohingegen das atomisierte Ni59Zr20Ti16Si2Sn3 MG Ausgangspulver eine spezifische Oberfläche von 0.29 m2/g besitzt. Dies weist darauf hin, dass das Mahlen eine Vergrößerung der Oberfläche durch die Verfeinerung der flüchtigen Messingphase induziert. Die spezifische Oberfläche der porösen-metallischen Gläser beträgt 10 m2/g und entsteht durch die Zerstörung der porösen Struktur während der selektiven Auflösung der nanoskaligen flüchtigen Phase. Obwohl das Kugelmahlen der Komposite (Pulver) und die darauf folgende Konsolidierung zwar den amorphen Anteil um etwa 50% reduziert, bietet die Pulvermetallurgische Herstellung durch die Verwendung von gläsernen Phasen mit verbesserter Stabilität gegenüber mechanisch induzierter Kristallisation, sowie einer reduzierten Affinität mit der flüchtigen Messingphase zur Vermeidung von unerwünschten Reaktionen während des Prozesses eine Möglichkeit, hochaktive poröse metallische Gläser für funktionelle Anwendungen, wie z.B. Katalyse, zu entwickeln. Hier ist eine schnelle Transport von Reaktanten und Produkten, welcher von den großen Poren, sowie eine hohe katalytische Aktivität, die von kleinen Poren und einer großen Oberfläche sichergestellt wird wesentlich. Daher wurden Untersuchungen zur Gasabsorptionsfähigkeit von porösem metallischen Glaspulver durchgeführt, um die Möglichkeit der Ersetzung von konventionellen Trägermaterialen bewerten zu können. Diese ersten Versuche zeigen die grundsäLzliche Eignung nano poröse metallischer Gläser zur Herstellung von porösen Strukturen mit einstellbarer Porenarchitektur auf die Langfristig für spezifische funktionelle Anwendungen von Interesse sein könnten.
10

Fracture and Deformation in Bulk Metallic Glasses and Composites

Narayan, R Lakshmi January 2014 (has links) (PDF)
Plastic flow in bulk metallic glasses (BMGs) localizes into narrow bands, which, in the absence of a microstructure that could obstruct them, propagate unhindered under tensile loading. In constrained deformation conditions such as indentation and at notch roots, extensive shear band formation can occur. A key issue in the context of fracture of BMGs that is yet to be understood comprehensively is how their toughness is controlled by various state parameters. Towards this end, the change in fracture toughness and plasticity with short term annealing above and below the glass transition temperature, Tg, is studied in a Zr-based BMG. Elastic properties like shear modulus, Poisson's ratio as well as parameters defining the internal state like the fictive temperature, Tf, density, and free volume are measured and correlation with the toughness was attempted at. While the elastic properties may help in distinguishing between tough and brittle glasses, they fail to reveal the reasons behind the toughness variations. Spherical-tip nanoindentation and microindentation tests were employed to probe the size, distributions and activation energies of the microscopic plastic carriers with the former and shear band densities with the latter. Results indicate that specimens annealed at a higher temperature, Ta, exhibit profuse shear banding with negligible changes in the local yield strengths. Statistical analysis of the nanoindentation data by incorporating the nucleation rate theory and the results of the cooperative shear model (CSM), reveals that short term annealing doesn't alter the shear transformation zone (STZ) size much. However, density estimates indicate changes in the free volume content across specimens. A model combining STZ activation and free volume accumulation predicts a higher rate in the reduction of the cumulative STZ activation barrier in specimens with a higher initial free volume content. Of the macroscopic physical properties, the specimen density is revealed to be a useful qualitative measure of enhancement in fracture toughness and plasticity in BMGs. We turn our attention next to the brittle fracture in BMGs, with the specific objective of understanding the mechanisms of failure. For this purpose, mode I fracture experiments were conducted on embrittled BMG samples and the fracture surface features were analyzed in detail. Wallner lines, which result from the interaction between the propagating crack front and shear waves emanating from a secondary source, were observed on the fracture surface and geometric analysis of them indicates that the maximum crack velocity to be ~800 m/s, which corresponds to ~0.32 times the shear wave speed. Fractography reveals that the sharp crack nucleation at the notch tip occurs at the mid-section of the specimens with the observation of flat and half-penny shaped cracks. On this basis, we conclude that the crack initiation in brittle BMGs occurs through hydrostatic stress assisted cavity nucleation ahead of the notch tip. High magnification scanning electron and atomic force microscopies of the dynamic crack growth regions reveal highly organized, nanoscale periodic patterns with a spacing of ~79 nm. Juxtaposition of the crack velocity with this spacing suggests that that the crack takes ~10-10 s for peak-to-peak propagation. This, and the estimated adiabatic temperature rise ahead of the propagating crack tip that suggests local softening, are utilized to critically discuss possible causes for the nanocorrugation formation. The Taylor’s fluid meniscus instability is unequivocally ruled out. Then, two other possible mechanisms, viz. (a) crack tip blunting and resharpening through nanovoid nucleation and growth ahead of the crack tip and eventual coalescence, and (b) dynamic oscillation of the crack in a thin slab of softened zone ahead of the crack-tip, are critically discussed. One way of alleviating the fracture-related issues in BMGs is to impart a microstructure to it, which would either impede the growth of shear bands or promote the multiplication of them. One such approach is through the BMG composites (BMGCs) route, wherein a crystalline second phase incorporated in the BMG matrix. There is a need to study the effects of reinforcement content, size and distribution on the mechanical behavior of the BMGC so as to achieve an optimum combination of strength and ductility. For this purpose, an investigation into the microstructure and tensile properties of Zr/Ti-based BMG composites of the same composition, but produced by different routes, was conducted so as to identify “structure–property” connections in these materials. This was accomplished by employing four different processing methods—arc melting, suction casting, semi-solid forging and induction melting on a water-cooled copper boat—on composites with two different dendrite volume fractions, Vd. The change in processing parameters only affects microstructural length scales such as the interdendritic spacing, λ, and dendrite size, δ, whereas compositions of the matrix and dendrite are unaffected. Broadly, the composite’s properties are insensitive to the microstructural length scales when Vd is high (∼75%), whereas they become process dependent for relatively lower Vd (∼55%). Larger δ in arc-melted and forged specimens result in higher ductility (7–9%) and lower hardening rates, whereas smaller dendrites increase the hardening rate. A bimodal distribution of dendrites offers excellent ductility at a marginal cost of yield strength. Finer λ result in marked improvements in both ductility and yield strength, due to the confinement of shear band nucleation sites in smaller volumes of the glassy phase. Forging in the semi-solid state imparts such a microstructure.

Page generated in 0.1089 seconds