• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 16
  • 12
  • 9
  • 6
  • 6
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 194
  • 35
  • 34
  • 26
  • 22
  • 21
  • 19
  • 18
  • 17
  • 17
  • 17
  • 17
  • 17
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Design of volumetric sub-THz negative refractive index metamaterial with gain

Kantemur, A., Tang, Q., Xin, H. 06 1900 (has links)
Conventional passive metamaterials always suffer from the limitation of loss and dispersion due to fundamental causality issue. Especially it becomes severe due to material loss at terahertz frequency. Our work resolves the loss problem by introducing gain device into the metamaterial structure. A passive volumetric metamaterial is firstly designed on the quartz substrate. A negative resistance is inserted into the wire of the structure to provide the gain. We have identified resonant tunneling diodes that work up into THz frequency and shown in simulation that simultaneous negative index and gain can be obtained.
42

Active Metamaterial: Gain and Stability, and Microfluidic Chip for THz Cell Spectroscopy

Tang, Qi, Tang, Qi January 2017 (has links)
Metamaterials are artificially designed composite materials which can exhibit unique and unusual properties such as the negative refractive index, negative phase velocity, etc. The concept of metamaterials becomes prevalent in the electromagnetic society since the first experimental implementation in the early 2000s. Many fascinated potential applications, e.g. super lens, invisibility cloaking, and novel antennas that are electrically small, have been proposed based on metamaterials. However, most of the applications still remain in theory and are not suitable for practical applications mainly due to the intrinsic loss and narrow bandwidth (large dispersion) determined by the fundamental physics of metamaterials .In this dissertation, we incorporate active gain devices into conventional passive metamaterials to overcome loss and even provide gain. Two types of active gain negative refractive index metamaterials are proposed, designed and experimentally demonstrated, including an active composite left-/right-handed transmission line and an active volumetric metamaterial. In addition, we investigate the non-Foster circuits for broadband matching of electrically small antennas. A rigorous way of analyzing the stability of non-Foster circuits by normalized determinant function is proposed. We study the practical factors that may affect the stability of non-Foster circuits, including the device parasitics, DC biasing, layouts and load impedance. A stable floating negative capacitor is designed, fabricated and tested. Moreover, it is important to resolve the sign of refractive index for active gain media which can be quite challenging. We investigate the analytical solution of a gain slab system, and apply the Nyquist criterion to analyze the stability of a causal gain medium. We then emphasize that the result of frequency domain simulation has to be treated with care. Lastly, this dissertation discusses another interesting topic about THz spectroscopy of live cells. THz spectroscopy becomes an emerging technique for studying the dynamics and interactions of cells and biomolecules, but many practical challenges still remain in experimental studies. We present a prototype of simple and inexpensive cell-trapping microfluidic chip for THz spectroscopic study of live cells. Cells are transported, trapped and concentrated into the THz exposure region by applying an AC bias signal while the chip maintains a steady temperature at 37°C by resistive heating. We conduct some preliminary experiments on E. coli and T cell solution and compare the transmission spectra of empty channels, channels filled with aqueous media only, and channels filled with aqueous medium with un-concentrated and concentrated cells.
43

Nano-optics of Perforated Metallic Films

Sun, Tianyi January 2014 (has links)
Thesis advisor: Krzysztof Kempa / Thesis advisor: Zhifeng Ren / In the past few decades, accompanied by the fascinating development of micro- and nano-fabrication techniques, the successful integration of subwavelength optics and multilayer structures has led to a number of remarkable discoveries. In this work, I present both experimental and theoretical investigations of the optics of thin metallic films with micro-/nano-scale perforations in the UV-VIS-IR ranges. Different fabrication techniques are employed, including nanosphere lithography, grain boundary lithography, crack templates, and sintered nanoparticles. The optical properties these films are studied, revealing important relation between optical response and the film geometry. This includes the evolution of plasmonic resonances in a series of periodic arrays of holes in a metallic film, with hole sizes increasing gradually until an array of islands is achieved. This evolution is an analog of the percolation problem, and critical phenomena are observed at the percolation threshold. Multilayer broad-band electromagnetic absorbers are also designed and fabricated based on the study of these perforated films. Parallel with these observations, an analytical coherence model is proposed to bridge the subwavelength and superwavelength limits. Such a model also provides an alternative way to handle thin random structures, avoiding large quantity of numerical computation. These studies can find applications in the design of sensors, ultrathin solar cells and transparent electrodes, as well as in applications where random structures are widely used. / Thesis (PhD) — Boston College, 2014. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
44

All-angle negative refraction of photonic and polaritonic waves in three-dimensionally periodic structures

Rose, Alec Daniel January 2009 (has links)
Thesis advisor: Krzysztof Kempa / Though nature provides a plethora of materials to work with, their properties are very much restricted, forcing severe limitations on the devices that are built from them. A huge portion of current technology stands to be significantly advanced and even revolutionized by the emergence of a new class of “configurable” materials. This class, generally referred to as metamaterials, has become more feasible than ever due to advancements in nanotechnology and fabrication techniques. Notable among nature’s limitations is an ever-positive index of refraction. This barrier has only recently been broken, and the known paths to negative refraction are few and limited. This paper introduces two distinct three-dimensional crystals capable of all-angle negative refraction. One uses the familiar photonic band, while the other is the first of its kind to rely on polaritonic waves. Their mode structures are examined and a set of parameters are chosen at which a negative effective index of refraction can be harnessed for unrestricted sub-wavelength lensing, demonstrated via numerical simulation. This work is expected to enable experimental observation of polaritonic negative refraction and sub-wavelength lensing at microwave frequencies. / Thesis (BS) — Boston College, 2009. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: College Honors Program. / Discipline: Physics.
45

Teraherts waveguiding on metamaterials

Williams, Christopher January 2009 (has links)
Terahertz time-domain spectroscopy (TTDS) is a powerful spectroscopic technique, combining pulsed broadband operation with high sensitivity coherent detection at room temperature. This thesis describes studies of terahertz surface plasmon polariton (SPP) guidance on a range of metamaterial structures using TTDS. Metamaterials are artificial media constructed from sub-wavelength dimension conducting elements which have an electromagnetic response that can be engineered by creating geometrical plasma-like resonances. In this work, high-confinement terahertz waveguiding is achieved by binding SPPs to cavity resonances which spoof the behaviour of intrinsic surface plasmon resonances found at much higher frequencies. The main aim of these studies is to investigate their properties with regard to potential applications in waveguiding and sensing. The first two chapters of this thesis describe the background to the subject. In chapter 3, the construction of a novel, flexible geometry, fibre-coupled TTDS system using hollow-core photonic crystal fibre (HC-PCF) is described. The extension of the system to include a near-field probe for evanescent field characterisation is also discussed. In chapter 4, we present the first direct observation of terahertz SPP propagation on plasmonic metamaterials consisting of copper sheets patterned with two-dimensional arrays of square copper-lined holes. Wavelength-scale field confinement is experimentally observed over an octave in frequency close to the band edge, representing a two order of magnitude increase in confinement compared to a flat metal sheet. In chapter 5, metamaterials consisting of two-dimensional arrays of coaxial apertures are shown to support two spoof plasmon modes below the band edge, enabling wavelength-scale field confinement to be experimentally realised at two distinct frequencies. In chapter 6, we present the first experimental results for terahertz SPP propagation on helical and discretely grooved cylindrical metamaterials termed metawires. In each case the results are compared with numerical simulations.
46

Locally resonant metamaterial for surface acoustic waves

Ash, Benjamin James January 2018 (has links)
The control of surface acoustic waves (SAWs) using arrays of annular holes was investigated both experimentally and through numerical modelling. Periodic elastic composites, phononic crystals (PnCs), were designed using these annular holes as constituent elements. Local resonances associated with the annular hole structure were found to induce phonon bandgaps of a highly frequency tailorable nature, at frequencies where radiation of acoustic energy into the bulk of the substrate medium is avoided. These bandgaps are numerically demonstrated to exhibit order-of-magnitude improved extinction ratios for finite numbers of PnC elements, relative to the commonly used cylindrical pillar architecture. Devices fabricated on commercially available lithium niobate SAW delay lines verify the predicted behaviour. Through laser knife-edge detector vibrometry, a bandgap attenuation of 24.5 dB at 97 MHz was measured, in excellent agreement with finite element method (FEM) simulations. The first reported experimental evidence of subwavelength confinement of propagating SAWs was realised using the same annular hole PnC concept. Defect holes of perturbed resonant frequencies are included within the PnC to define waveguides and cavities. Confinement within these defects was demonstrated to occur at subwavelength frequencies which was experimentally observed in fabricated cavities using standard SAW transducers, as measured by laser Doppler vibrometry. The success of this result was attributed to the impedance matching of hybridised modes to Rayleigh SAWs in un-patterned substrates at the defect resonance. The work here has the potential to transform the field by providing a method to enhance SAW interactions, which is a route towards the realisation of many lab-on-chip applications. Finally, the use of annular hole arrays as negative refraction metamaterials was investigated. The symmetry was broken of the unit cells by alternating either the locally resonant frequencies or the distance separating the constituent elements. Both methods, called the bi-dispersive and bi-periodic methods, were numerically demonstrated to exhibit negative group velocity bands within the first Brillouin zone. Preliminary experimental results show that the design has the potential to be used in superlensing, where a SAW spot was imaged over a subwavelength flat lens. Future research looks to demonstrate that this result can be attributed to negative refraction.
47

Method of moments simulation of infinite and finite periodic structures and application to high-gain metamaterial antennas

Dardenne, Xavier 28 March 2007 (has links)
Recent years have seen a growing interest in a new kind of periodic structures called ``metamaterials'. These new artificial materials exhibit many new appealing properties, not found in nature, and open many new possibilities in the domain of antenna design. This thesis describes efficient numerical tools and methods for the analysis of infinite and finite periodic structures. A numerical simulation code based on the Method of Moments has been developed for the study of both large phased arrays and periodic metamaterials made of metal and/or dielectrics. It is shown how fast infinite-array simulations can be used in a first instance to approximately describe the fields radiated by large antenna arrays or compute transmission and reflection properties of metamaterials. These infinite-array simulations rely on efficient computation schemes of the doubly periodic Green’s function and of its gradient. A technique based on eigenmode analysis is also described, that allows to efficiently compute the dispersion curves of periodic structures. Accounting for the finiteness of real structures is possible in good approximation thanks to a finite-by-infinite array approach. Moreover, the excitation of large finite periodic structures by a single (non periodic) source can be studied by using a combination of the Array Scanning Method with a windowing technique. All these techniques were validated numerically on several examples and it is finally shown how they can be combined to design high gain antennas, based on metamaterial superstrates excited by a slotted waveguide. The proposed design method relies on the separation of the whole structure in two different problems. An interior problem is used to optimize the input impedance of the antenna, while the radiation pattern can be optimized in the exterior problem.
48

SAR Reduction on a Portable Device Using Intelligent Metamaterial

Wang, Yi-jen 28 July 2010 (has links)
In this thesis, intelligent metamaterial was designed to reduce the peak specific absorption rate (SAR) value. Intelligent metamaterial means that when the antenna is far away from a human head, the metamaterial behaves like air and it does not affect the antenna performance; when the antenna is close to a human head, however, the metamaterial acts like a single negative (SNG) material. We designed two kinds of intelligent metamaterial structures. One makes use of impedance mismatching, and the other makes use of the frequency band shift property to reduce the peak SAR value at the operating frequency. The former structure is broadband, and it can reduce the peak SAR value by 56.7%. The latter structure has a much smaller size compared to the former one, and it is suitable for cellular phone applications. The peak SAR value can be reduced by 40% using the latter structure. The proposed two kinds of the intelligent metamaterial structures do not affect the antenna performance. Finally, the intelligent metamaterial has been applied to a cellular phone. The dimension of the intelligent metamaterial is only 40 mm ¡Ñ 20 mm ¡Ñ 0.8 mm. The intelligent metamaterial does not affect the antenna performance when the antenna is far away from a human head. When the antenna is close to a human head, the peak SAR is reduced by 41.7%.
49

General Forms of Eigen-Mode Analysis for Multilayer Optical Waveguides

Chen, Shih-yuan 05 July 2012 (has links)
In this thesis, we proposed general forms of eigen-mode analysis for multilayer optical waveguides. This study discussed the periodic structure in transverse direction and used the slowly varying envelope approximation to approximate the wave function. Firstly, we presented a general method for analyzing the multilayer nonlinear optical waveguide structure by using modal theory. The nonlinear optical waveguide is a medium whose refractive index changes with the electric field intensity. The general method can also be degenerated into some other special cases for analyzing multilayer nonlinear optical waveguide. Secondly, a general method for analyzing the multilayer optical waveguides with photonic metamaterials characterized by simultaneously negative dielectric permittivity and magnetic permeability was studied. The research pointed out explicitly that the three-layer planar waveguide with photonic metamaterials could support forbidden regions. The complete set of modes of all possible solutions for the TE wave in photonic metamaterials optical waveguide was found. The transverse electric field distributions and dispersion relations in multilayer optical waveguides can be obtained by using these general forms. Finally, we used the general forms to design an all-optical mode converter which composed of a pair of multibranch optical waveguides. The analytical and numerical results show excellent agreement.
50

Study of Compact Tunable Filters Using Negative Refractive Index Transmission Lines

Lewis, Brian Patrick 2011 May 1900 (has links)
Today's microwave circuits, whether for communication, radar, or testing systems, need compact tunable microwave filters. Since different microwave circuit applications have radically different size, power, insertion loss, rejection, vibration, and thermal requirements, new filter technologies with different balances between these requirements are always desirable. Negative Refractive Index (NRI) transmission media was discovered 10 years ago with the unique property of negative phase propagation. A literature review was conducted to identify potential NRI methods for filters and other devices, but no NRI tunable filters were found. To address this gap, a family of tunable NRI bandpass filters was simulated and constructed successfully using end-coupled zeroth order resonators. Tuning was accomplished by controlling the negative phase length of the NRI sections with varactors. The resulting L-band filters exhibited a 25-40 percent tunable range, no higher order resonances, and required only one fourth the length of a coupled-line filter constructed from traditional 180 degree microstrip resonators.

Page generated in 0.0838 seconds