11 |
Estudo da influência das características estruturais da hidroxipropil-metil-celulose (HPMC) nas propriedades de superfície de filmes poliméricos, na incorporação e liberação de nicotina / Study of the influence of hydroxypropyl-methyl-cellulose (HPMC) structural characteristics on the surface properties of polymeric films, on the incorporation and release of nicotineMarani, Pedro Lazzarin 26 June 2015 (has links)
A hidroxipropil-metil-celulose (HPMC) é um éter de celulose que possui estrutura variável dependendo da quantidade de grupos metila, apolares, e hidroxipropoxila, polares, inseridos na cadeia polimérica celulósica. A polaridade do polímero é controlada através da quantidade de grupos metila (DS) e de hidroxipropoxila (MS) e afeta as propriedades de filmes poliméricos finos e espessos, além de alterar as características de liberação controlada de princípios ativos (neste caso nicotina) incorporados em filmes de HPMC, reticulados através de uma reação de esterificação com ácido cítrico. Com exceção do polímero com baixo DS e alto MS (e por consequência mais polar), filmes finos apresentam valores de energia superficial próximos aos de poliestireno ou poli(metacrilato de metila) (~41 mJ/m/2), indicando forte orientação molecular dos grupos metila ao ar, de acordo com um modelo apresentado. Esta orientação favoreceu as interações com o ar, que se organizou na superfície, formando pequenas cavidades superficiais, de acordo com imagens de microscopia de força atômica (AFM). Apesar de seguirem a mesma ordem de acordo com a polaridade dos polímeros, os valores de energia superficial observados para filmes espessos foram mais elevados, devido a uma menor quantidade de grupos metila orientados ao ar, acarretados por uma maior interação intermolecular no \"bulk\" do filme polimérico e uma consequente diminuição nos graus de liberdade da molécula polimérica. Um modelo para a estrutura de filmes espessos é proposto, no qual a variação nos valores de DS e MS explica as diferentes estruturas superficiais observadas em imagens de AFM. A incorporação de nicotina em filmes espessos também sofre influência dos valores de DS e MS; uma maior incorporação do princípio ativo foi observada em maiores DS e menores MS. A liberação controlada do princípio ativo também é influenciada por esses fatores estruturais, porém o pH do meio externo também é um fator a ser considerado: somente em pHs maiores que 8,8, onde a nicotina se encontra majoritariamente na sua forma neutra/desprotonada, pode-se observar uma cinética mais lenta e controlada para o polímero de maior MS e menor DS. A força iônica também influencia a cinética de liberação, porém em uma extensão muito menor que uma variação no pH. Os resultados obtidos também foram analisados segundo o modelo de liberação de Korsmeyer-Peppas, que quantifica a interação princípio ativo-matriz polimérica e descreve o mecanismo de liberação através do parâmetro difusional n. Ao final, baseado nos resultados obtidos, pode-se recomendar para uso tópico o polímero J, com menor DS e maior MS, como sendo o mais indicado para Terapia de Reposição de Nicotina (TRN), devido à sua liberação quantitativa e em velocidades mais lentas, possuindo a menor retenção de nicotina ao final do processo dentre os polímeros estudados; em casos de peles fortemente oleosas, mais alcalinas, a indicação do polímero E, com maior DS e menor MS, é recomendada pela sua capacidade de liberar uma maior quantidade de princípio ativo quando em pHs mais elevados. / Hydroxypropyl-methyl-cellulose (HPMC) is a cellulose ether with variable structure, depending on the amount of methyl groups, with apolar characteristics, and hydroxypropyl groups, with polar characteristics, inserted on the polymer backbone chain. The polymer polarity is controlled through the amount of methyl (DS) and hydroxypropyl (MS) groups, and affects the properties of thin and thick polymer films, as well as impacts the active principle release rate (in this case, nicotine) from HPMC polymer films, crosslinked through a esterification reaction with citric acid. With exception of the polymer with low DS and high MS (and consequently, more polar), thin films present surface energy values close to those determined for polystyrene or poly(methyl-methacrylate) (~41 mJ/m2), indicating strong orientation of the methyl groups to the air, according to a proposed model. This orientation favored the interactions with the air, which has been organized at the surface, forming small superficial cavities, according to Atomic Force Microscopy (AFM) images. Despite following the same pattern according to the polymer\'s polarities, values of surface energy observed for thick films were higher, due to a lower amount of methyl groups oriented to the air, driven by a higher interchain interaction in the bulk polymer film and consequent lowering in the polymer molecule degrees of freedom. A model to the thick films structure has been proposed, where the variation in the values of DS and MS explains the differences observed in the AFM images. Nicotine incorporation in thick films is also influenced by the values of DS and MS; a higher incorporation of the active principle has been observed in higher DS and lower MS. The active principle\'s controlled release is influenced by these structural parameters as well, although the medium\'s pH should also be considered: only at pHs higher than 8,8, where nicotine can be found mostly at its neutral/non-protonated form, a slower and controlled release can be observed for the polymer with higher MS and lower DS. The ionic strength influences the release kinetics too, but in a much minor extension than the medium pH does. The results obtained were analyzed using the Korsmeyer-Peppas model, which quantifies the active principle-polymer matrix interaction and describes the release mechanism through the diffusional parameter n. At the end, based on the results obtained, the polymer J, with higher MS and lower DS, can be the most indicated for Nicotine Replacement Therapy (NRT), due to its quantitative release and at lower rates and constant amounts over time, allowing the lowest nicotine retention at the end of the process amongst all evaluated polymers; at highly oily skin, more alkaline, the polymer E, with higher DS and lower MS, can be recommended by its characteristics of more quantitative release under higher pHs.
|
12 |
Estudo da influência das características estruturais da hidroxipropil-metil-celulose (HPMC) nas propriedades de superfície de filmes poliméricos, na incorporação e liberação de nicotina / Study of the influence of hydroxypropyl-methyl-cellulose (HPMC) structural characteristics on the surface properties of polymeric films, on the incorporation and release of nicotinePedro Lazzarin Marani 26 June 2015 (has links)
A hidroxipropil-metil-celulose (HPMC) é um éter de celulose que possui estrutura variável dependendo da quantidade de grupos metila, apolares, e hidroxipropoxila, polares, inseridos na cadeia polimérica celulósica. A polaridade do polímero é controlada através da quantidade de grupos metila (DS) e de hidroxipropoxila (MS) e afeta as propriedades de filmes poliméricos finos e espessos, além de alterar as características de liberação controlada de princípios ativos (neste caso nicotina) incorporados em filmes de HPMC, reticulados através de uma reação de esterificação com ácido cítrico. Com exceção do polímero com baixo DS e alto MS (e por consequência mais polar), filmes finos apresentam valores de energia superficial próximos aos de poliestireno ou poli(metacrilato de metila) (~41 mJ/m/2), indicando forte orientação molecular dos grupos metila ao ar, de acordo com um modelo apresentado. Esta orientação favoreceu as interações com o ar, que se organizou na superfície, formando pequenas cavidades superficiais, de acordo com imagens de microscopia de força atômica (AFM). Apesar de seguirem a mesma ordem de acordo com a polaridade dos polímeros, os valores de energia superficial observados para filmes espessos foram mais elevados, devido a uma menor quantidade de grupos metila orientados ao ar, acarretados por uma maior interação intermolecular no \"bulk\" do filme polimérico e uma consequente diminuição nos graus de liberdade da molécula polimérica. Um modelo para a estrutura de filmes espessos é proposto, no qual a variação nos valores de DS e MS explica as diferentes estruturas superficiais observadas em imagens de AFM. A incorporação de nicotina em filmes espessos também sofre influência dos valores de DS e MS; uma maior incorporação do princípio ativo foi observada em maiores DS e menores MS. A liberação controlada do princípio ativo também é influenciada por esses fatores estruturais, porém o pH do meio externo também é um fator a ser considerado: somente em pHs maiores que 8,8, onde a nicotina se encontra majoritariamente na sua forma neutra/desprotonada, pode-se observar uma cinética mais lenta e controlada para o polímero de maior MS e menor DS. A força iônica também influencia a cinética de liberação, porém em uma extensão muito menor que uma variação no pH. Os resultados obtidos também foram analisados segundo o modelo de liberação de Korsmeyer-Peppas, que quantifica a interação princípio ativo-matriz polimérica e descreve o mecanismo de liberação através do parâmetro difusional n. Ao final, baseado nos resultados obtidos, pode-se recomendar para uso tópico o polímero J, com menor DS e maior MS, como sendo o mais indicado para Terapia de Reposição de Nicotina (TRN), devido à sua liberação quantitativa e em velocidades mais lentas, possuindo a menor retenção de nicotina ao final do processo dentre os polímeros estudados; em casos de peles fortemente oleosas, mais alcalinas, a indicação do polímero E, com maior DS e menor MS, é recomendada pela sua capacidade de liberar uma maior quantidade de princípio ativo quando em pHs mais elevados. / Hydroxypropyl-methyl-cellulose (HPMC) is a cellulose ether with variable structure, depending on the amount of methyl groups, with apolar characteristics, and hydroxypropyl groups, with polar characteristics, inserted on the polymer backbone chain. The polymer polarity is controlled through the amount of methyl (DS) and hydroxypropyl (MS) groups, and affects the properties of thin and thick polymer films, as well as impacts the active principle release rate (in this case, nicotine) from HPMC polymer films, crosslinked through a esterification reaction with citric acid. With exception of the polymer with low DS and high MS (and consequently, more polar), thin films present surface energy values close to those determined for polystyrene or poly(methyl-methacrylate) (~41 mJ/m2), indicating strong orientation of the methyl groups to the air, according to a proposed model. This orientation favored the interactions with the air, which has been organized at the surface, forming small superficial cavities, according to Atomic Force Microscopy (AFM) images. Despite following the same pattern according to the polymer\'s polarities, values of surface energy observed for thick films were higher, due to a lower amount of methyl groups oriented to the air, driven by a higher interchain interaction in the bulk polymer film and consequent lowering in the polymer molecule degrees of freedom. A model to the thick films structure has been proposed, where the variation in the values of DS and MS explains the differences observed in the AFM images. Nicotine incorporation in thick films is also influenced by the values of DS and MS; a higher incorporation of the active principle has been observed in higher DS and lower MS. The active principle\'s controlled release is influenced by these structural parameters as well, although the medium\'s pH should also be considered: only at pHs higher than 8,8, where nicotine can be found mostly at its neutral/non-protonated form, a slower and controlled release can be observed for the polymer with higher MS and lower DS. The ionic strength influences the release kinetics too, but in a much minor extension than the medium pH does. The results obtained were analyzed using the Korsmeyer-Peppas model, which quantifies the active principle-polymer matrix interaction and describes the release mechanism through the diffusional parameter n. At the end, based on the results obtained, the polymer J, with higher MS and lower DS, can be the most indicated for Nicotine Replacement Therapy (NRT), due to its quantitative release and at lower rates and constant amounts over time, allowing the lowest nicotine retention at the end of the process amongst all evaluated polymers; at highly oily skin, more alkaline, the polymer E, with higher DS and lower MS, can be recommended by its characteristics of more quantitative release under higher pHs.
|
13 |
CELLULOSE BASED THERMOCHROMIC SMART WINDOW SYSTEMSai Swapneel Aranke (11209545) 30 July 2021 (has links)
<p>Smart windows that modulate solar
radiation by changing their optical state in response to temperature stimulus
are developing as promising solutions towards reducing the energy consumption
of buildings. The market adoption of such systems has been slow due to the
barriers in scalability, cost, as well as complexity in their integration into
existing systems. Aiming these features,
we have proposed a retrofit smart window design based on the temperature-responsive
polymer Methyl Cellulose (MC). The system utilizes a sustainable, earth
abundant and cost-effective cellulose based thermo-responsive material to
transform existing windows to a thermally dynamic smart window system. The
observed optical change of MC from transparent to opaque state is dependent on
temperature and is triggered by the thermodynamic mechanism of reversible
coil-globule transition, which results in a stable performance of the proposed
device. Its solar modulation ability was studied using ultraviolet-visible-
spectroscopy. Effect of MC concentration and various salts on the optical
performance were investigated. It was found that the transition temperature the
polymer can be tuned by varying MC concentration and by adding salts to the
system. The tunability of transition temperature is a function of the concentration
of salt and the type of anion in the salt. It was observed that the transition
temperature of the window can be tuned between
to
, allowing a wide range of control over switching
temperature. Controllable LCST, low
freezing point, sustainable base material, scalable production, low cost,
retrofit system makes them ideal candidates for smart window applications. </p>
|
14 |
Thermal and rheological approaches for the systematic enhancement of pharmaceutical polymeric coating formulations : effects of additives on glass transition temperature, dynamic mechanical properties and coating performance in aqueous and solvent-free coating process using DSC, shear rheometry, dissolution, light profilometry and dynamic mechanical analysisIsreb, Mohammad January 2011 (has links)
Additives, incorporated in film coating formulations, and their process parameters are generally selected using a trial-and-error approach. However, coating problems and defects, especially those associated with aqueous coating systems, indicate the necessity of embracing a quality-by-design approach to identify the optimum coating parameters. In this study, the feasibility of using thermal and rheological measurements to help evaluate and design novel coating formulations has been investigated. Hydroxypropyl methylcellulose acetate succinate (HPMCAS), an enteric coating polymer, was used as the film forming polymer. Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), and Parallel Plate Shear Rheometery (PPSR) were used to evaluate the effect of different plasticisers on the performance of HPMCAS. The results illustrate that, for identical formulations, the DSC and DMA methods yielded up to 40% differences in glass transition temperature (Tg) values. Moreover, Tg measured using loss modulus signals were always 20-30 oC less than those measured using tan delta results in DMA testing. Absolute and relative Tg values can significantly vary depending on the geometry of the samples, clamp size, temperature ramping rate and the frequency of the oscillations. Complex viscosity data for different formulations demonstrated a variable shear thinning behaviour and a Tg independent ranking. It is, therefore, insufficient to rely purely on Tg values to determine the relative performance of additives. In addition, complex viscosity results, obtained using both the DMA and PPSR techniques at similar temperatures, are shown to be comparable. The results from both techniques were therefore used to produce continuous master curves for the HPMCAS formulations. Additionally, step strain tests showed that HPMCAS chains do not fully III disentangle after 105 seconds as predicted by the Maxwell model. Finally, in situ aqueous-based coating experiments proved that mixtures of triethyl acetyl citrate and acetylated monoglyceride (TEAC/AMG), even without cooling of the suspension, do not cause blocking of the spray nozzle whereas triethyl citrate (TEC) based formulae did. TEAC (alone or in a combination with AMG) exhibits superior wettability to HPMCAS than TEC/AMG formulations and can be used to enhance the efficiency and film quality of the dry coating process.
|
15 |
Thermal and rheological approaches for the systematic enhancement of pharmaceutical polymeric coating formulations. Effects of additives on glass transition temperature, dynamic mechanical properties and coating performance in aqueous and solvent-free coating process using DSC, shear rheometry, dissolution, light profilometry and dynamic mechanical analysis.Isreb, Mohammad January 2011 (has links)
Additives, incorporated in film coating formulations, and their process
parameters are generally selected using a trial-and-error approach. However,
coating problems and defects, especially those associated with aqueous
coating systems, indicate the necessity of embracing a quality-by-design
approach to identify the optimum coating parameters. In this study, the
feasibility of using thermal and rheological measurements to help evaluate and
design novel coating formulations has been investigated. Hydroxypropyl
methylcellulose acetate succinate (HPMCAS), an enteric coating polymer, was
used as the film forming polymer. Differential Scanning Calorimetry (DSC),
Dynamic Mechanical Analysis (DMA), and Parallel Plate Shear Rheometery
(PPSR) were used to evaluate the effect of different plasticisers on the
performance of HPMCAS. The results illustrate that, for identical formulations,
the DSC and DMA methods yielded up to 40% differences in glass transition
temperature (Tg) values. Moreover, Tg measured using loss modulus signals
were always 20-30 oC less than those measured using tan delta results in DMA
testing. Absolute and relative Tg values can significantly vary depending on the
geometry of the samples, clamp size, temperature ramping rate and the
frequency of the oscillations. Complex viscosity data for different formulations
demonstrated a variable shear thinning behaviour and a Tg independent
ranking. It is, therefore, insufficient to rely purely on Tg values to determine the
relative performance of additives. In addition, complex viscosity results,
obtained using both the DMA and PPSR techniques at similar temperatures, are
shown to be comparable. The results from both techniques were therefore used
to produce continuous master curves for the HPMCAS formulations.
Additionally, step strain tests showed that HPMCAS chains do not fully
III
disentangle after 105 seconds as predicted by the Maxwell model. Finally, in situ aqueous-based coating experiments proved that mixtures of triethyl acetyl citrate and acetylated monoglyceride (TEAC/AMG), even without cooling of the suspension, do not cause blocking of the spray nozzle whereas triethyl citrate (TEC) based formulae did. TEAC (alone or in a combination with AMG) exhibits superior wettability to HPMCAS than TEC/AMG formulations and can be used to enhance the efficiency and film quality of the dry coating process.
|
Page generated in 0.046 seconds