Spelling suggestions: "subject:"micro channels"" "subject:"picro channels""
1 |
Studying Heat Removal Through Turbulated Micro-channelsAl-Busa’idi, Rashid January 2021 (has links)
No description available.
|
2 |
Reliability Analysis of the Cracked Ag-SU8 Interface on the Channel Wall in a Micro-PEMFCShih, Yi-san 16 August 2006 (has links)
The efficiency of the fuel cell depends on both the kinetics of the electrochemical process and performance of the components. The main aim of this research is to analysis the reliability of the cracked Ag-SU8 interface on the channel wall in a micro-PEMFC. An existed surface crack on the channel wall subjected to the flow induced compressive stresses and shear stresses will propagate and lead to the spall formation. The results show that as the crack length increases, the value of KI will increase, but the value of KII decreases slightly. The reliability analysis of the interfacial crack between Ag and SU8 on the Micro-channel wall in PEMFC is discussed in this thesis.
|
3 |
Bio-Particle Counting and Sizing Using Micro-Machined Multichannel Coulter Counter with Wavelet Based De-NoisingSawant, Rupesh Prakash January 2007 (has links)
No description available.
|
4 |
Flow boiling heat transfer, pressure drop and dryout characteristics of low GWP refrigerants in a vertical mini-channelAnwar, Zahid January 2014 (has links)
Two-phase heat transfer in mini/micro-channels is capable of meeting the high cooling demands of modern high heat flux applications. The phase change process ensures better temperature uniformity and control for local hot spots. Furthermore, these compact channels could be helpful in reducing the required charge and material inventories.Environmental concerns—mainly ozone depletion and global warming—have instigated a search for new alternatives in refrigeration industry. While new compounds are being developed to address stringent legislative demands, natural alternatives are also coming into prominence. A limited number of investigators have reported on thermal performance of such alternatives. The current study is therefore focused on saturated flow boiling heat transfer, pressure drop and dryout characteristics for three low global warming potential (GWP) refrigerants (R152a, R600a and R1234yf) in a vertical mini-channel.In this study experiments were carried out by uniformly heating a test section (stainless steel tube with 1.60 mm inside diameter and 245 mm heated length) at 27 and 32 oC saturation temperature with 50-500 kg/m2s mass velocities. The effects of various parameters of interest (like heat flux, mass flux, system pressure, vapor quality, operating media) on flow boiling heat transfer, frictional pressure drop and dryout characteristics were recorded. R134a, which has been widely used in several applications, is utilized as a reference case for comparison of thermal performance in this study.Experimental results for saturated boiling heat transfer showed strong influence of heat flux and system pressure with insignificant contributions from mass flux and vapor quality. Two phase frictional pressure drop increased with mass flux, vapor quality and with reduced operating pressure. The dryout heat flux remained unaffected with variation in saturation temperature, critical vapor quality in most cases was about 85%. The experimental results (boiling heat transfer, two-phase pressure drop and dryout heat flux) were compared with well-known macro and micro-scale correlations from the literature. / <p>QC 20141124</p>
|
5 |
Novel heat exchanger fin surface design for improved condensate managementYu, Rong 13 July 2011 (has links)
No description available.
|
6 |
Copper Micro-channel Loop ThermosyphonFlores-Lozada, Juan G. January 2009 (has links)
No description available.
|
7 |
Capillary Study on Geometrical Dependence of Shear Viscosity of Polymer MeltsLin, X., Kelly, Adrian L., Woodhead, Michael, Ren, D.Y., Wang, K.S., Coates, Philip D. January 2014 (has links)
No
|
8 |
The optimal hydraulic diameter of semicircular and triangular shaped channels for compact heat exchangers / J.C. VenterVenter, Johann Christiaan January 2010 (has links)
All heat pump cycles have one common feature that connects them to one another;
this feature is the presence of a heat exchanger. There are even some heat–driven
cycles that are completely composed of heat exchangers, every heat exchanger
fulfilling a different, though critical role.
The need therefore exists to optimize heat exchangers, more specifically Compact
Heat Exchangers (CHE). This study deals with the optimization of such a CHE by
determining an optimal hydraulic diameter of the micro–channels in a CHE, for
minimal hydraulic losses. Two Computational Fluid Dynamics (CFD) models were
developed for a single micro–channel that is present in a CHE. The first model had a
semi–circular cross–section, the second a triangular cross–section.
The results were verified by comparing it with existing experimental data. Following
the verification of the results, the micro–channel was optimized by implementing an
optimum diameter for the lowest pressure drop over the micro–channel. This was done
for both the semi–circular and triangular micro–channel cross–sections. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2011.
|
9 |
The optimal hydraulic diameter of semicircular and triangular shaped channels for compact heat exchangers / J.C. VenterVenter, Johann Christiaan January 2010 (has links)
All heat pump cycles have one common feature that connects them to one another;
this feature is the presence of a heat exchanger. There are even some heat–driven
cycles that are completely composed of heat exchangers, every heat exchanger
fulfilling a different, though critical role.
The need therefore exists to optimize heat exchangers, more specifically Compact
Heat Exchangers (CHE). This study deals with the optimization of such a CHE by
determining an optimal hydraulic diameter of the micro–channels in a CHE, for
minimal hydraulic losses. Two Computational Fluid Dynamics (CFD) models were
developed for a single micro–channel that is present in a CHE. The first model had a
semi–circular cross–section, the second a triangular cross–section.
The results were verified by comparing it with existing experimental data. Following
the verification of the results, the micro–channel was optimized by implementing an
optimum diameter for the lowest pressure drop over the micro–channel. This was done
for both the semi–circular and triangular micro–channel cross–sections. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2011.
|
10 |
Geometrical dependence of viscosity of polymethylmethacrylate melt in capillary flowLin, X., Kelly, Adrian L., Ren, D.Y., Woodhead, Michael, Coates, Philip D., Wang, K.S. January 2013 (has links)
No / The shear viscosity of polymethylmethacrylate (PMMA) melt is particularly investigated by using a twin-bore capillary rheometer at four temperatures of 210, 225, 240, and 255 degrees C with different capillary dies. Experimental results show that the geometrical dependence of shear viscosity is significantly dependent on melt pressure as well as melt temperature. The measured shear viscosity increases with the decrease of die diameter at lower temperatures (210 and 225 degrees C) but decreases with the decrease of die diameter at higher temperatures (240 and 255 degrees C). Based on the deviation of shear viscosity curves and Mooney method, negative slip velocity is obtained at low temperatures and positive slip velocity is obtained at high temperatures, respectively. Geometrical dependence and pressure sensitivity of shear viscosity as well as temperature effect are emphasized for this viscosity deviation. Moreover, shear viscosity curve at 210 degrees C deviates from the power law model above a critical pressure and then becomes less thinning. Mechanisms of the negative slip velocity at low temperatures are explored through Doolittle viscosity model and Barus equation, in which the pressure drop is used to obtain the pressure coefficient by curve fitting. Dependence of pressure coefficient on melt temperature suggests that the pressure sensitivity of shear viscosity is significantly affected by temperature. Geometrical dependence of shear viscosity can be somewhat weakened by increasing melt temperature. (c) 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3384-3394, 2013
|
Page generated in 0.0623 seconds