Spelling suggestions: "subject:"microbubble"" "subject:"microbubbles""
31 |
Acoustic characterisation of ultrasound contrast agents at high frequencySun, Chao January 2013 (has links)
This thesis aims to investigate the acoustic properties of ultrasound contrast agents (UCAs) at high ultrasound frequencies. In recent years, there has been increasing development in the use of high frequency ultrasound in the fields of preclinical, intravascular, ophthalmology and superficial tissue imaging. Although research studying the acoustic response of UCAs at low diagnostic ultrasonic frequencies has been well documented, quantitative information on the acoustical properties of UCAs at high ultrasonic frequencies is limited. In this thesis, acoustical characterisation of three UCAs was performed using a preclinical ultrasound scanner (Vevo 770, VisualSonics Inc., Canada). Initially the acoustical characterisation of five high frequency transducers was measured using a membrane hydrophone with an active element of 0.2 mm in diameter to quantify the transmitting frequencies, pressures and spatial beam profiles of each of the transducers. Using these transducers and development of appropriate software, high frequency acoustical characterisation (speed and attenuation) of an agar-based tissue mimicking material (TMM) was performed using a broadband substitution technique. The results from this study showed that the acoustical attenuation of TMM varied nonlinearly with frequency and the speed of sound was approximately constant 1548m·s-1 in the frequency range 12-47MHz. The acoustical properties of three commercially available lipid encapsulated UCAs including two clinical UCAs Definity (Lantheus Medical Imaging, USA) and SonoVue (Bracco, Italy) and one preclinical UCAs MicroMarker (untargeted) (VisualSonics, Canada) were studied using the software and techniques developed for TMM characterisation. Attenuation, contrast-to-tissue ratio (CTR) and subharmonic to fundamental ratio were measured at low acoustic pressures. The results showed that large off-resonance and resonant MBs predominantly contributed to the fundamental response and MBs which resonated at half of the driven frequency predominantly contributed to subharmonic response. The effect of needle gauge, temperature and injection rate on the size distribution and acoustic properties of Definity and SonoVue was measured and was found to have significant impacts. Acoustic characterisations of both TMM and UCAs in this thesis extend our understanding from low frequency to high frequency ultrasound and will enable the further development of ultrasound imaging techniques and UCAs design specifically for high frequency ultrasound applications.
|
32 |
Caractérisations théoriques et expérimentales d'agents de contraste ultrasonore ciblés / Theorical and experimental characteristics of ultrasound targeted contrast agentsAired-Selmani, Leila 19 March 2013 (has links)
Depuis leur introduction, les agents de contraste ont révolutionné l'imagerie échographique. Ils sont composés de microbulles gazeuses, qui injectés par voie intraveineuse dans le sang, ils améliorent l'image échographique. Une autre application pour laquelle les caractéristiques physiques des agents de contraste sont exploitées est l'imagerie ciblée. Une approche basée sur l'utilisation de ligands intégrés à la paroi des microbulles, celles-ci adhérent aux facteurs de surfaces moléculaires surexprimés par les cellules endothéliales qui tapissent la paroi interne des vaisseaux sanguins. Pour pouvoir distinguer ces microbulles de celles qui circulent librement, elles doivent réfléchir un signal acoustique suffisamment intense. Cependant, le faible taux d'adhérence des microbulles engendre une réduction du signal acoustique. Pour résoudre ce problème, il est important de déterminer l'effet des parois sur leurs dynamiques acoustiques. Dans cette thèse, nous avons étudié l’effet des parois élastiques sur le comportement dynamique des microbulles constituant les agents de contraste. Dans un premier temps, un modèle théorique représentant une paroi avec une épaisseur finie a été développé. Il a été démontré que l’amplitude de l’écho rétrodiffusé par une microbulle proche d’une paroi avec une épaisseur finie est inférieure à celui d’une microbulle se trouvant dans un fluide infini. D'autres parts, pour représenter la paroi d’un vaisseau sanguin, les propriétés mécaniques de la paroi élastique ont été intégrées au modèle. Il a été observé que la fréquence de résonance d’une microbulle proche d’une paroi est supérieure à celle dans un fluide infini. Par la suite, nous avons étudié l’effet de trois types de parois sur le comportement d’une microbulle parmi lesquelles la paroi d'OptiCell communément utilisée en expérimentations ultrasonores. Les résultats ont montré que la microbulle proche de la paroi d’OptiCell diffuse un écho supérieur à celui de la microbulle éloignée de la paroi, lorsque la fréquence d’excitation est au-dessus de sa fréquence de résonance. Nous avons constaté aussi que les petites bulles sont plus sensibles à la proximité de la paroi. Par la suite, nous avons développé un modèle décrivant une microbulle attachée à une paroi élastique. Nous avons montré que le contact direct de la bulle avec la paroi induit une diminution de l'écho par rapport à la même bulle dans un liquide infini. Le contact direct de la bulle avec la paroi engendre une augmentation de la fréquence de résonance part rapport à une bulle sans contact direct. Enfin, une étude expérimentale a montré l'avantage de l'imagerie sous-harmonique pour différencier les microbulles attachées des microbulles libres. / Since they were introducted, contrast agents have revolutionized the ultrasound imaging. They are composed of tiny gaseous microbubbles and when injected intravenously into the blood, they improve the ultrasound image. Targeted imaging is another application based on the physical characteristics of contrast agents. This approach is based on the ligands incorporation into the microbubbles shell. The microbubble attach to the molecular factors overexpressed by endothelial cells, covering the inner wall of blood vessels. To distinguish these microbubbles from those freely circulating, attached microbubble have to produce an acoustic signal that is sufficiently strong. However, the low microbubbles adhesion induces a decrease of the acoustic signal. To make it possible, it is important to determine the effect of the elastic wall on their acoustic response. This thesis aimed to study the effect of elastic walls on the ultrasonic behavior of targeted microbubbles. First, a theoretical model describing a wall with finite thickness was developed. It has been shown that the scattered echo amplitude by a microbubble near a wall with finite thickness is small in comparison to the echo from a microbubble located in an infinite fluid. Furthermore, and in order to account for the effect of blood vessel wall, the mechanical properties of the wall have been incorporated into the model. The results showed that the resonane frequency of a microbubble near the wall is higher than the resonanace of the same microbubble in an infinite medium. Subsequently, we studied the effect of three types of walls on the microbubble behavior including the wall of OptiCell chamber which is commonly used in ultrasonic experiments. We have shown that microbubbles near the OptiCell wall diffuses a higher echo than those far from the wall when the excitation frequency is above the microbubble resonance frequency. On the other side, we observed that small microbubbles to the presence of the wall. Afterward, we developed a model describing a microbubble attached to the wall. We have shown that the microbubble in direct contact with the wall induces a decrease of the echo amplitude compared to the same bubble in infinite liquid. Moreover, the direct contact of the bubble with the wall generates an increase of the resonance frequency relative to a bubble without direct contact. Finally, an experimental study has shown the advantage of the subharmonic imaging to differentiate attached microbubbles from the free ones.
|
33 |
Perfluoroalkylated compounds at the Interfaces : surface nanodomains and spherulites : interactions with phospholipid films / Composés perfluoroalkylés aux interfaces : nanodomaines de surface et sphérulites : interactions avec les films des phospholipidesLiu, Xian-He 22 October 2018 (has links)
Cette thèse concerne l’auto-assemblage d'alcanes semi-fluorés (FnHm) et de fluorocarbures (FCs) aux interfaces et leurs interactions avec des phospholipides (PLs) en 2D et 3D. Nous avons étudié les sphérulites formées dans des films de diblocs FnHm. La morphologie de ces sphérulites, concentrique ou radiale, est contrôlée par la longueur des blocs Fn et Hm et la vitesse de refroidissement. Les nanodomaines de diblocs FnHm dans les monocouches de Langmuir sont incompressibles et forment des gels physiques 2D, même à pression nulle. Les blocs Hm sont cristallisés et inclinés d’ ~30°C par rapport à la normale à la surface. La réflectivité de neutrons a montré que l’albumine adsorbée sur des monocouches de PL est désorbée par un FC gazeux. Ce résultat pourrait permettre de lutter contre l’inactivation du surfactant pulmonaire par les protéines sériques. L’ajout de diblocs à des films de PLs accroit l'élasticité des monocouches. Nous avons préparé des microbulles stables à parois de PLs/FnHm, les diblocs agissant en co-surfactants. / This thesis focuses on the self-assembly of semi-fluorinated alkanes (FnHm) and fluorocarbons (FCs) at interfaces and their interactions with phospholipids (PLs) in 2D and 3D. 2D Spherulites were identified in FnHm films for the first time. Their morphology, ring-banded or radial, was controlled by varying block lengths and cooling rate. Nanodomains of FnHm in monolayers formed incompressible 2D physical gels, even at zero surface pressure. The Hm segments are crystalline and titled by 30°C to the normal to the surface. Neutron reflectivity showed that albumin adsorbed on PLs monolayers is desorbed by exposure to FC gas, which opens the potential use of FCs to treat the inactivation of the lung surfactant by serum proteins. Incorporating FnHm into PL monolayers increases their elasticity. Small, stable microbubbles of PLs/FnHm were obtained. FnHm diblocks function as co-surfactants for stabilizing microbubbles.
|
34 |
Self-propulsion of Contaminated MicrobubblesNathaniel H Brown (8816204) 10 May 2020 (has links)
<div>In many natural and industrial processes, bubbles are exposed to surface-active contaminants (surfactants) that may cover the whole or part of the bubble interface. A partial coverage of the bubble interface results in a spontaneous self-propulsion mechanism, which is yet poorly understood.</div><div>The main goal of this study is to enhance the understanding of the flow and interfacial mechanisms underlying the self-propulsion of small surfactant contaminated bubbles. The focus is on characterizing the self-propulsion regimes generated by the presence of surface-active species, and the influence of surfactant activity and surface coverage on the active bubble motion. </div><div>The study was developed by simultaneously solving the full system of partial differential equations governing the free-surface flow physics and the surfactant transport on the deforming bubble interface using multi-scale numerical simulation. </div><div>Results show in microscopic detail how surface tension gradients (Marangoni stresses) induced by the uneven interfacial coverage produce spontaneous hydrodynamics flows (Marangoni flows) on the surrounding liquid, leading to bubble motion. Results also establish the influence of both surfactant activity and interfacial coverage on total displacement and average bubble velocity at the macroscale. </div><div>Findings from this research improve the fundamental understanding of the free-surface dynamics of self-propulsion and the associated transport of surface-active species, which are critical to important natural and technological processes, ranging from the Marangoni propulsion of microorganisms to the active motion of bubbles and droplets in microfluidic devices. Overall, the findings advance our understanding of active matter behavior; that is, the behavior of material systems with members able to transduce surface energy and mass transport into active movement.</div>
|
35 |
Active and Ultrasensitive Chemical and Biosensing through Optothermally Generated Microbubble.Karim, Farzia 22 June 2020 (has links)
No description available.
|
36 |
Synthesis and evaluation of PEO-coated materials for microchannel-based hemodialysisHeintz, Keely 01 August 2012 (has links)
The marked increase in surface-to-volume ratio associated with microscale devices for hemodialysis leads to problems with hemocompatibility and blood flow distribution that are more challenging to manage than those encountered at the conventional scale. In this work, stable surface modifications with pendant polyethylene oxide (PEO) chains were produced on polycarbonate microchannel and polyacrylonitrile membrane materials used in construction of microchannel hemodialyzer test articles. These coatings were evaluated in relation to protein repulsion, impact on urea permeability through the membrane, and impact on bubble retention through single-channel test articles. PEO layers were prepared by radiolytic grafting of PEO-PBD-PEO (PBD = polybutadiene) triblock copolymers to microchannel and membrane materials. Protein adsorption was detected by measurement of surface-bound enzyme activity following contact of uncoated and PEO-coated surfaces with ��-galactosidase. Protein adsorption was decreased on PEO-coated polycarbonate and polydimethyl siloxane (PDMS) materials by 80% when compared to the level recorded on uncoated materials. Protein adsorption on membrane materials was not decreased with PEO-PBD-PEO treatment; a PEI (polyethylene imide) layer exists on the AN69 ST membrane which is intended to trap heparin during membrane pre-treatment. It is still unclear how this PEI layer interacts with PEO-PBD-PEO. Neither the PEO-PBD-PEO triblocks nor the irradiation process was observed to have any effect on polyacrylonitrile membrane permeability to urea, nor did the presence of additional fibrinogen and bovine serum albumin (BSA) in the urea filtrate. The PEO-PBD-PEO treatment was not able to visibly reduce bubble retention during flow through single-channel polycarbonate test articles, however, the rough surfaces of the laser-etched polycarbonate microchannels may be causing this bubble retention. This surface treatment holds promise as a means for imparting safe, efficacious coatings to blood processing equipment that ensure good hemocompatibility and blood flow distribution, with no adverse effects on mass transfer. / Graduation date: 2013
|
37 |
Imagerie de contraste ultrasonore avec transducteurs capacitifs micro-usinés / Contrast agent imaging with capacitive micromachined ultrasonic transducersNovell, Anthony 07 July 2011 (has links)
Les produits de contraste ultrasonore constituent un véritable apport pour l’imagerie échographique et sont aujourd’hui utilisés en clinique pour l’évaluation de la perfusion cardiaque ou encore la détection de tumeurs. Depuis quelques années, les transducteurs capacitifs micro-usinés (cMUTs) se présentent comme une alternative intéressante aux transducteurs piézoélectriques classiques et offrent certains avantages comme une large bande passante. Nous proposons dans cette thèse d’évaluer le potentiel de cette technologie pour l’imagerie de contraste. Dans un premier temps, notre étude s’est orientée vers l’adaptation des cMUTs à l’imagerie non linéaire. Ensuite, de nouvelles méthodes de détection de contraste, basées sur le comportement spécifique des microbulles, ont été développées pour exploiter les avantages de la technologie cMUT. Comparés aux méthodes conventionnelles, les résultats obtenus montrent une meilleure visualisation des agents de contraste par rapport aux tissus environnants. L’utilisation de cMUTs améliore l’efficacité de ces méthodes démontrant, ainsi, leur intérêt pour l’imagerie de contraste. / Using ultrasound contrast agents, many clinical diagnoses have now been improved thanks to new contrast dedicated imaging techniques. Contrast agents are now used routinely in cardiology and in radiology to improve the detection and visualization of blood perfusion in various organs (e.g. tumors). Since a few years, Capacitive Micromachined Ultrasonic Transducers (cMUTs) have emerged as a good alternative to traditional piezoelectric transducer. cMUTs provide several advantages such as wide frequency bandwidth which could be further developed for nonlinear imaging. In this dissertation, we propose to exploit cMUT for contrast agent imaging. Firstly, the excitation signal was adapted to suppress the inherent nonlinear behavior of cMUT. Then, new detection methods based on specific acoustic properties of microbubbles have been developed and evaluated with a cMUT probe. Results show a good suppression from tissue responses whereas echoes from microbubbles are enhanced. Furthermore, the efficiency of each method is improved by the use of cMUT revealing the potential of this new transducer technology for contrast agent detection.
|
38 |
Fluid-Structure Interaction Modeling of Epithelial Cell Deformation during Microbubble Flows in Compliant AirwaysChen, Xiaodong 20 June 2012 (has links)
No description available.
|
39 |
Dynamics of Multi-functional Acoustic Holograms in Contactless Ultrasonic Energy Transfer SystemsBakhtiari Nejad, Marjan 28 August 2020 (has links)
Contactless ultrasonic power transfer (UPT), using piezoelectric transducers, is based on transferring energy using acoustic waves, in which the waves are generated by an acoustic source or transmitter and then transferred through an acoustic medium such as water or human tissue to a sensor or receiver. The receiver then converts the mechanical strain induced by the incident acoustic waves to electricity and delivers to an electrical load, in which the electrical power output of the system can be determined. The execution and efficiency of this technology can be significantly enhanced through patterning, focusing, and localization of the transmitted acoustic energy in space to simultaneously power pre-determined distributed sensors or devices. A passive 3D-printed acoustic hologram plate alongside a single transducer can generate arbitrary and pre-designed ultrasound fields in a particular distance from the hologram mounted on the transmitter, i.e., a target plane. This dissertation presents the use of these simple, cost-effective, and high-fidelity acoustic holograms in UPT systems to selectively enhance and pattern the electrical power output from the receivers. Different holograms are numerically designed to create single and multi-focal pressure patterns in a target plane where an array of receivers are placed. The incident sound wave from a transmitter, after passing through the hologram, is manipulated, hence, the output field is the desired pressure field, which excites the receivers located at the pre-determined focal points more significantly. Furthermore, multi-functional holograms are designed to generate multiple images at different target planes and driving frequencies, called, respectively, multi-image-plane and multi-frequency patterning holograms. The multiple desired pressure distributions are encoded on the single hologram plate and each is reconstructed by changing the axial distance and by switching the frequency. Several proof-of-concept experiments are performed to verify the functionality of the computationally designed holograms, which are fabricated using modern 3D-printers, i.e., the desired wavefronts are encoded in the hologram plates' thickness profile, being input to the 3D-printer. The experiments include measurement of output pressure fields in water using needle hydrophones and acquisition of receivers' voltage output in UPT systems.
Another technique investigated in this dissertation is the implementation of acoustic impedance matching layers deposited on the front leading surface of the transmitter and receiver transducers. Current UPT systems suffer from significant acoustic losses through the transmission line from a piezoelectric transmitter to an acoustic medium and then to a piezoelectric receiver. This is due to the unfavorable acoustic impedance mismatch between the transducers and the medium, which causes a narrow transducer bandwidth and a considerable reflection of the acoustic pressure waves at the boundary layers. Using matching layers enhance the acoustic power transmission into the medium and then reinforce the input as an excitation into the receiver. Experiments are performed to identify the input acoustic pressure from a cylindrical transmitter to a receiver disk operating in the 33-mode of piezoelectricity. Significant enhancements are obtained in terms of the receiver's electrical power output when implementing a two-layer matching structure. A design platform is also developed that can facilitate the construction of high-fidelity acoustically matched transducers, that is, the material layers' selection and determination of their thicknesses. Furthermore, this dissertation presents a numerical analysis for the dynamical motions of a high-intensity focused ultrasound (HIFU)-excited microbubble or stable acoustic cavitation, which includes the effects of acoustic nonlinearity, diffraction, and absorption of the medium, and entails the problem of several biomedical ultrasound applications. Finally, the design and use of acoustic holograms in microfluidic channels are addressed which opens the door of acoustic patterning in particle and cell sorting for medical ultrasound systems. / Doctor of Philosophy / This dissertation presents several techniques to enhance the wireless transfer of ultrasonic energy in which the sound wave is generated by an acoustic source or transmitter, transferred through an acoustic medium such as water or human tissue to a sensor or receiver. The receiver transducer then converts the vibrational energy into electricity and delivers to an electrical load in which the electrical power output from the system can be determined. The first enhancement technique presented in this dissertation is using a pre-designed and simple structured plate called an acoustic hologram in conjunction with a transmitter transducer to arbitrarily pattern and shape ultrasound fields at a particular distance from the hologram mounted on the transmitter. The desired wavefront such as single or multi-focal pressure fields or an arbitrary image such as a VT image pattern can simply be encoded in the thickness profile of this hologram plate by removing some of the hologram material based on the desired shape. When the sound wave from the transmitter passes this structured plate, it is locally delayed in proportion to the hologram thickness due to the different speed of sound in the hologram material compared to water. In this dissertation, various hologram types are designed numerically to implement in the ultrasonic power transfer (UPT) systems for powering receivers located at the predetermined focal points more significantly and finally, their functionality and performances are verified in several experiments.
Current UPT systems suffer from significant acoustic losses through the transmission from a transmitter to an acoustic medium and then to a receiver due to the different acoustic impedance (defined as the product of density and sound speed) between the medium and transducers material, which reflects most of the incident pressure wave at the boundary layers. The second enhancement technology addressed in this dissertation is using intermediate materials, called acoustic impedance matching layers, bonded to the front side of the transmitter and receiver face to alleviate the acoustic impedance mismatch. Experiments are performed to identify the input acoustic pressure from a transmitter to a receiver. Using a two-layer matching structure, significant enhancements are observed in terms of the receiver's electrical power output. A design platform is also developed that can facilitate the construction of high-fidelity acoustically matched transducers, that is, the material layers' selection and determination of their thicknesses. Furthermore, this dissertation presents a numerical analysis for the dynamical motions of a microbubble exposed to a high-intensity focused ultrasound (HIFU) field, which entails the problem of several biomedical ultrasound applications such as microbubble-mediated ultrasound therapy or targeted drug delivery. Finally, an enhancement technique involving the design and use of acoustic holograms in microfluidic channels is addressed which opens the door of acoustic patterning in particle and cell sorting for medical ultrasound systems.
|
40 |
Libération localisée d’ATP cellulaire par ultrasons et microbulles pour l’immunothérapie du cancerDemeze Kenfack, Falonne 03 1900 (has links)
Plusieurs types cancéreux prolifèrent par leur capacité à exprimer les marqueurs de régulation négative du système immunitaire, tels que les récepteurs PD-L1 et CD80/86 qui inhibent l’activation et la prolifération des lymphocytes T. L’inhibition de ces voies par des anticorps peut ainsi réactiver la réponse immunitaire chez certains patients. D’autres voies de signalisations sont aujourd’hui explorées, incluant la signalisation purinergique (ATP/adénosine) dans la modulation du microenvironnement tumoral. L’adénosine triphosphate extracellulaire (ATPe) est classifiée parmi les molécules de danger extracellulaire et joue un rôle crucial dans l’activation de l’inflammasome NLRP3, un médiateur important de l’activation des réactions pro-inflammatoires. Les ultrasons sont des ondes mécaniques de haute pression capable d’engendrer la cavitation inertielle des microbulles. Il a été démontré que les microbulles (MB) stimulées par ultrasons (US) libèrent de l’ATP dans le muscle squelettique et dans le muscle cardiaque. Nous posons l’hypothèse selon laquelle le traitement US+MB appliqué sur une tumeur de cancer du sein murin (4T1) in vivo peut libérer de l’ATPe localement dans le but d’activer des réactions pro-inflammatoires pour l’immunothérapie du cancer. Dans ce mémoire, nous présentons la quantification du signal d’ATPe d’une culture de cellules 4T1, puis in vivo dans le muscle et dans une tumeur solide sous-cutanée chez la souris à la suite d’une stimulation par US+MB. Nos études démontrent que la thérapie US+MB libère de l’ATP in vitro et in vivo. En comparant le signal découlant de l’injection IM d’ATP avec celui du muscle et des tumeurs post-US+MB, nous pouvons conclure que le traitement US+MB libère une quantité d’ATPe supérieure à 250 µM, ce qui est supérieur à la quantité d’ATPe dans un microenvironnement tumoral et qui persiste pour une durée d’au moins 60 min dans le muscle et 45 min dans la tumeur. La transfection stable de cellules MC38 (carcinome colorectal) à travers le gène PLenti-PmeLUC, codant la synthèse de luciférase sur la face externe de la membrane cellulaire, est explorée afin d’augmenter le rapport signal sur bruit en bioluminescence (annexe A). L’utilisation de POM-1 (inhibiteur pharmacologique de CD39) et l’utilisation de souris knockout du gène CD39 sont discutées pour la suite du projet afin d’inhiber la dégradation de l’ATP extracellulaire (Annexe B). / Several cancer types proliferate due to their ability to express the negative regulatory markers of the immune system (PD-L1 and CD80/86) which inhibit the activation and proliferation of T cells. Inhibition of these pathways by antibodies (anti-PDL-1, anti-PD-1, anti-CTLA-4) can thus reactivate the immune system in some patients. Other signaling pathways are currently being explored, including purinergic signaling (ATP/adenosine) in the modulation of the tumor microenvironment. Extracellular Adenosine triphosphate (eATP) is classified as danger signal plays a critical role in the activation of the NLRP3 inflammasome, an important mediator of the innate immune response. Ultrasound (US) and microbubbles (MB) have been shown to release ATP in skeletal and cardiac muscle. Thus, we hypothesized that US+MB treatment in 4T1 breast cancer cells could locally activate pro-inflammatory responses by releasing an eATP in tumors for cancer immunotherapy. In this thesis, I present the quantification of the eATP signal after US+MB stimulation in vitro (4T1 cell culture), then in muscle and subcutaneous solid tumors in the mouse. Our studies demonstrate that US+MB treatment releases ATP both in vitro and in vivo. In comparison with the IM injection of ATP, we can conclude that US+MB released a large amount of ATP (>250 µM), which is more than the eATP concentration in the untreated tumor microenvironment, and which persisted for at least 60 min in muscle and 45 min in tumor. The stable transfection of MC38 cells (colorectal carcinoma) through the Plenti-PmeLUC gene, encoding the synthesis of luciferase on the external surface of cell membrane is explored to increase the signal to noise ratio in bioluminescence (see appendix A). The use of POM-1 (pharmacological inhibitor of CD39) and CD39 gene knockout mice to inhibit the degradation of eATP signal are discussed for the continuation of the project.
|
Page generated in 0.044 seconds