• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 10
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 27
  • 27
  • 27
  • 25
  • 7
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Continuum design sensitivity analysis based force calculation in EM devices

Li, Min, 1977 Apr. 2- January 2007 (has links)
The continuum design sensitivity analysis (CDSA) has been applied to the magnetostatic and electrostatic force calculation. This method allows the computation of the net loading force on a body as well as the force distribution on the surface of the body. An algorithm for force calculation combined with a standard field analysis software package is presented. The efficiency and accuracy of the method is proved through the numerical implementation applied to a set of test examples. In addition, the new approach has several advantages over the traditional methods based on the Maxwell Stress Tensor, such as no air gap or artificial interference with the original model is required. Particularly, the performance analysis of a MEMS micro-mirror using CDSA torque calculation is conducted for the first time.
2

Continuum design sensitivity analysis based force calculation in EM devices

Li, Min, 1977 Apr. 2- January 2007 (has links)
No description available.
3

Design, analysis and experiment of novel compliant micromanipulators with grippers driven by PZT actuators

Wu, Zhi Gang January 2017 (has links)
University of Macau / Faculty of Science and Technology / Department of Electromechanical Engineering
4

The use of electrochemical micromachining for making a microfloat valve

Park, Sang-Bin 23 September 1999 (has links)
Micromanufacturing consists of processes for producing structures, devices or systems with feature sizes measured in micrometers. Micromanufacturing began in the mid-1960's with microelectronics fabrication technology. In the 1980's, Micro-Electro-Mechanical Systems (MEMS) began to be developed, in which electrical and mechanical subsystems were integrated at small scales. More recently, Microtechnology-based Energy and Chemical Systems (MECS) have been developed that have led to improved heat and mass transfer in energy and chemical systems. At Oregon State University, new methods to fabricate MECS have been developed. One of the new methods involves microlamination--bonding thin strips of different materials together. This method has generated a high volume and low-cost approach to the production of high-aspect-ratio (height-to-width) structures. Past efforts to make microfloat valves using microlamination methods resulted in an 11:1 diodicity ratio. It was hypothesized that the valve had a ridge of redeposited material around the valve seat caused by the condensation and deposition of ablation ejecta during laser machining. The contribution of this thesis is the creation of a microfloat valve using an Electrochemical Micromachining (EMM) method. EMM methods are known to produce smooth surfaces, free of burrs or any other types of aspirates. Therefore, it was hypothesized that float valves made with EMM methods would improve valve performance. Four steps were involved in the creation of the microfloat valve: lamina formation, laminae registration, laminae bonding and component dissociation. A total of 9 laminae-some of which were made with 304 stainless steel 76.2 ��m thick, others of which were made with 50.8 ��m thick polyimide-made up the microfloat valve. Photolithography and EMM were used to form the lamina. Even though the laminae created by EMM were smaller in size than desired, the machined areas did not have redeposited material, and some areas had straight walls. In laminae registration, a two edge registration method was used. In the laminae bonding step, laminae were bonded by the adhesive method at 248��C under 135 kPa pressure for 13.5 minutes. In the component dissociation step, a capacitor dissociation method that was designed at OSU was used. Upon performance testing, the average diodicity ratio for the EMM valve was 12.45 over the range 0 kPa-450 kPa, indicating improved performance when compared to the Laser Ablation valve-which had an average 11.17 over the range 0 kPa-100 kPa. Microscope examination of valves revealed that statistically significant improvement in valve performance would require refinement of component dissociation methods. / Graduation date: 2000
5

Comparison of two microvalve designs fabricated in mild steel using microprojection welding and capacitive dissociation

Terhaar, Tyson J. 11 September 1998 (has links)
Since the dawn of the computer age, there has been a push to create miniature devices. These devices were initially integrated circuit (IC) devices to perform calculations for computers. As the technology progressed, the scope of the devices diverged to included microelectromechanical (MEMS) devices, meaning that the devices perform mechanical movements via electrical actuation. More recently, a new generation of devices has evolved called microtechnology-based energy and chemical systems (MECS). MECS may employ MEMS technology, however the systems are not designed to produce only mechanical movement. MECS deal with heat and mass transfer, the basic processes used in energy, chemical and biological systems, in the mesoscale realm. Mesoscale devices range from the size of a sugar cube to the size of a human fist. The possibilities of MECS have not been realized. Heating and cooling systems, chemical mixing/distribution, and locking systems are all potential applications. The devices require: 1) revolutionary design, accounting for the scaling effects on device performance; 2) new fabrication technologies for the creation of these designs; and 3) good material properties for mechanical and chemical interactions. Fabrication requirements for MECS are different than for MEMS in that MECS generally require non-silicon metals. Metal microlamination (MML) has been introduced as a general practice for meeting the fabrication requirements for MECS. Prior MML fabrication methods have emphasized the use of diffusion bonding, soldering, or brazing techniques. This thesis will introduce: 1) a novel microflapper valve design fabricated in mild steel using a novel microprojection welding technique; 2) a novel microfloat valve design fabricated in mild steel using a novel capacitive dissociation process for creating free floating geometries. The devices are characterized by comparing actual flow rates to theoretical flow rates of equivalent orifice sizes. Preliminary results show that the microfloat valve achieved an average diodicity (free flow versus leakage rate) ratio of 11.19, while the microflapper valve achieved an average diodicity ratio of 4.08. The theoretical orifice sizes of the microfloat and microflapper valves are 0.629 mm and 0.611 mm respectively. These results suggest that the float valve is the superior design. / Graduation date: 1999
6

Simulation and optimization of MEMS actuators and tunable capacitors

Wan, Weijie, 1982- January 2006 (has links)
Micro-Electro-Mechanical Systems (MEMS) have played an important role in modern microelectronics, thermal, mechanical and hybrid systems. MEMS technology is a very promising means that might have a great impact on almost every corner of the society. Although many design methodology of MEMS already exists, not as much attention was given to the synthesis and optimization of MEMS devices. This thesis focuses on the optimization of MEMS actuators and MEMS tunable comb drive capacitors. The optimization is based on changing device geometry to achieve desired output parameter profile. For example in the design of MEMS tunable comb drive capacitors, the output parameter is the capacitance tuning range. Numerical experiments were performed to show the successful implementation of the optimization method.
7

A modular, direct chip attach, wafer level MEMS package : architecture and processing

Neysmith, Jordan M. 12 1900 (has links)
No description available.
8

Mechanics of micromachined bridge-type accelerometer

Zhang, Rui January 2005 (has links)
Thesis (MTech (Mechanical Engineering))--Cape Peninsula University of Technology, 2005 / Having simple structure and high sensitivity, micro accelerometer is a type of popular transducer used to measure the acceleration in a great variety of conditions. The bridge-type micro accelerometer is a typical micro accelerometer and has many types. As one of research project of Kentron in South Africa, the thesis presented here analyzes the bridge-type capacitive nticro accelerometer (BTCMA) and the bridge-type micro accelerometer with two piezoelectric thin films read-out (BTPMA). In this thesis, the similar structures are used on BTCMA and BTPMA For proving the fundamental mode of the structure can measure acceleration and utilizing the structural and electric characteristic to avoid the effect of higher modes, the program CoventorWare for nticro-electric-mechanical system (MEMS) design and analysis is used here to analyze the modes of these two structures, The two group piezoelectric thin films of BTPMA can be connected in serial or parallel configurations. Integrating piezoelectric effect method, strength method and energy method, the analytical analysis of these two configurations has been done with particular emphasis on the elastic characteristics of the thin films. The analytical formulas of transducer, sensitivity, resonance frequency, noise, quality factor, ntinimum detectable signal and maximum detectable range are obtained. According to the comparison results between these two configurations, the charge output in parallel configuration is a little more than that in serial configuration and the sensitivity in serial configuration is much higher than that in parallel configuration. Finally, a calculation of certain practical nticro accelerometer size is used to prove the above conclusions. On the base of capacitance theory, strength method and energy method, the analytical analysis of the BTCMA has been done in this thesis.
9

Mechanics of micro capacitive accelerometer with u-shape cantilever beam

Wang, Lin January 2005 (has links)
Thesis (MTech (Mechanical Engineering))--Cape Peninsula University of Technology, 2005. / Due to an increasing in industrial micromation need in recent years, the use of micro accelerometers has been highly increased. Consecutively, this has promoted research activities in this field; capacitive accelerometers also have got high concern at large. As a research project of the Kentron in South Africa, this thesis deals with a theoretical model for a one-dimensional micro capacitive accelerometer with U-shape cantilever beam. The properties of the small angle tilted-plate capacitor have been analyzed; the capacitance equation and electrostatic force equation of this kind capacitor have been derived. The sensing element of this accelerometer consists of an inertial mass connected with two cantilever beams. The vibration modes analysis to the sensing element was accomplished by using CoventorWare2004's MemMech module, the result indicates that the main vibration mode can cause the capacitance change observably and the effect of the other modes to the capacitance can be ignored, which satisfied the purpose of the design. In the process of deriving the linearizing acceleration equation, the angle of the inertial mass caused by the deformation of the U-shape cantilever beam was taken into account as well as the electrostatic force between the two electrodes, thus the more precise acceleration linear equation was obtained. The sensitivity equation was derived through the acceleration linear equation, the relationship between the main parameters of the system and the sensitivity has been analyzed. The differential structure of this micro capacitive accelerometer was also analyzed; the linearizing acceleration equation and sensitivity equation of this kind structure were derived, it has been proven that the sensitivity of this structure is twice than the normal structure approximately. The maximum detectable signal was obtained in terms of the fracture strength of the cantilever beam and the maximum displacement of the inertial mass. The minimum detectable signal was obtained in terms of the thermal noise analysis. In the process of the dynamic analysis, the forced vibration produced by the sinusoidal periodic force and sinusoidal periodic moment was analyzed and the transient capacitance equation was derived, this proved the system has good dynamic character in theory. The system was simulated and analyzed by using CoventorWare2004's Saber module. The initial capacitance analysis indicates the relationship between the voltage and the initial capacitance, the result is close to the analytic model. The resonance frequencies analysis indicates that the main dimensions of the sensing element can determine the resonance frequencies and each vibration mode's sequence, the initial dimensions of the sensing element was proved reasonable by analyzing. Sensitivity analysis and Monte Carlo analysis indicate the effect of the sensing element's normal manufacturing tolerance to the system's frequency is small. Impact of plate curvature analysis indicates the effect of the inertial mass's deformation caused by the surface stress to the capacitance is small. Transient analysis obtained the system's transient displacement curve of six directions and transient capacitance curve in normal terms; this proved the system has good dynamic character in the simulating environment.
10

Simulation and optimization of MEMS actuators and tunable capacitors

Wan, Weijie, 1982- January 2006 (has links)
No description available.

Page generated in 0.0948 seconds