• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Avvattning av nanocellulosa i en DDA / Dewatering of nanocellulose in a DDA

Artman, Anna January 2015 (has links)
Genom laborativa försök skulle avvattning och retention av nanocellulosa i en DDA (Dynamic drainage analyzer) undersökas. Detta genom att tillsätta retentionskemikalier i varierande mängder för att se hur det påverkade avvattningen. Uppdragsgivaren var Innventia och laborationerna utfördes på SP:s laboratorium där DDA instrument fanns tillgängligt. DDA instrumentet liknar den maskin som används för papperstillverkning och därför anses det vara möjligt att kunna avvattna nanocellulosa på liknande instrument. Målet med examensarbetet var att få fram en nanocellulosafilm med goda barriärsegenskaper men också se hur tillsats av bärarfibrer påverkar filmens egenskaper. Målet var också att se om retention och avvattningstiden för nanocellulosa hänger ihop och om det går att få fram repeterbara resultat. Två olika viror undersöktes också i de laborativa experimenten i DDA, en som benämns som Albanyviran och en som benämns som Stratexviran. Albanyviran är tätare än Stratexviran och effekten av viratäthet på retention och avvattningstid undersöktes. Nanocellulosa eller Mikrofibrillär cellulosa (MFC) är ett nytt och förnybart material som utvinns ur träfibrer och karakteriseras av sitt geléaktiga utseende[4]. Nanocellulosan lämpar sig utmärkt för en mängd olika produkter t.ex. som barriär, enskilt i form av filmer eller i blandade produkter. Vid tillverkning av nanocellulosa används en homogenisator som sönderdelar cellulosafibrer till fibriller och fibrillaggregat. Detta var tidigare ett problem då fibrerna satte igen homogenisatorn och tillverkningen var mycket energikrävande[4]. När det gäller filmtillverkning av nanocellulosa kvarstår problemet när det kommer till avvattningen. Nanocellulosan späddes till önskad koncentration och innan de laborativa försöken kördes den genom en homogenisator för att dispergera fibrillerna i vätskan efter spädningen. Bärarfibrerna slogs upp i en uppslagare med två liter kranvatten för att sedan tillsättas till den homogeniserade nanocellulosan. Under försöket i DDA varierades mängden och andelen MFC (mikrofibrillär cellulosa) och bärarfibrer (Modorefmassa). Till MFC och bärarfibersuspensionen i DDA:n tillsattes sedan två retentionskemikalier vid varje försök, C-PAM PL-1520 och EKA NP-780 i varierande mängder. Efter avvattningen i DDA:n pressades filmen vid olika tryck och tider för att därefter mäta filmernas ytvikt och syrgasbarriär. Den film som ansågs mest lämplig gällande avvattning i DDA under försöken var vid 0,2 % med 90 % MFC och 10 % bärarfibrer. Filmen gav den högsta retentionen, en god syrgasbarriär och var lätt att hantera. Det som kan ses från resultaten av syrgasbarriären är att vid 0,2 % med 90 % MFC och 10 % bärarfibrer erhölls det lägsta OTR (oxygen transmission rate) -värdet på 0,53 vilket visar på en bra syrgasbarriär. Retentionen för det försöket var det högsta på 87,1 % medan avvattningstiden låg på närmare 250 sekunder. Avvattningstiderna var höga, dock så var det vid denna totalkoncentration ibland svårt att se när avvattningen avslutades då tiden klockades manuellt. Det som kan ses utifrån resultaten är att bärarfibrerna inte påverkar filmerna negativt utan kan gynna både så retentionen och syrgasbarriären blir bättre, dock fås en högre ytvikt och avvattningstiderna blir längre. / Through laboratory experiments, dewatering and retention of nanocellulose in a DDA (Dynamic Drainage Analyzer) were analysed. By adding retention chemicals in varied amounts, the effects on the dewatering was shown. The Job initiator was Innventia and the laboratory work were made at SP's laboratory where the DDA instrument was available. The DDA instrument is similar to the machine that is used for paper manufacturing in a large scale and therefore, it could be possible to dewater nanocellulose on a similar instrument. The goal of the thesis was to develop a nanocellulose film with good barrier properties but also to see how adding carrier fibers effect the properties of the film. The goal was also to see if the retention and dewatering time of nanocellulose are connected and whether it is possible to obtain repeatable results. Two different wires were also examined in the laboratory experiments in a DDA, the Albanywire and the Stratexwire. The Albany wire was denser than the Stratex wire and the effect that the density caused on retention and dewatering time was examined. Nanocellulose or Microfibrillated cellulose (MFC) is a new and renewable material that is made from wood fibers and is characterized by its gelatinous appearance. [4] Nanocellulose is suited for a variety of products, such as barriers, alone in the form of films or mixed in products. In the manufacture of nanocellulose a homogenizer is used which decomposes cellulose fibers to fibrils fibril aggregate. This was previously a problem while the fibers clogged the homogenizer and the production had a high energy consumption. [4] When it comes to making a nanocellulose film the problems with dewatering remains. The nanocellulose was diluted to the desired concentration and before the laboratory experiments it was run through a homogenizer, to disperse the fibrils in the liquid after the dilution. The carrier fibers was prepared in a blender with two liters of tap water before it was added to the homogenized nanocellulose. During the experiment in the DDA the amount and proportion of the MFC (microfibrillar cellulose) and carrier fibers (Modorefmassa) was varied. To the MFC and carrier fiber suspension in the DDA two retention chemicals were added in each experiment, C- PAM PL -1520 and EKA NP- 780 in varying amounts. After the dewatering of nanocellulose in the DDA the films were pressed at different pressures and times, thereafter the oxygen permeability was analyzed. The film that was considered the most suitable referring to dewatering in the DDA during the attempts was at 0.2 % with 90 % MFC and 10 % carrier fibers. The film gave the highest retention, a good oxygen barrier and was easy to handle. What can be seen from the results of the oxygen barrier measurement is that at 0.2 % with 90 % MFC and 10% carrier fibers obtained the lowest value OTR (oxygen transmission rate), which indicates on a good oxygen barrier. Retention at this concentration was the highest at 87.1 %, while the drainage time was nearly 250 seconds. The dewatering time was high, however during this concentration it’s sometimes difficult to see when the dewatering ended while the time was clocked manually. Conclusions from the results are that the carrier fibers doesn’t have a negatively effect on the films, rather they can benefit both the retention and oxygen barrier, however a higher paper weight was obtained and the dewatering time became longer.
2

Microfibrillated cellulose based nanomaterials / Nanomatériaux à base de nanofibrilles de cellulose

Blell, Rebecca 13 November 2012 (has links)
La cellulose étant l'un des biopolymères les plus abondants, elle est employée dans ce travail de thèse sous sa forme nano-fibrille (2 à 5nm de diamètre et plusieurs microns de long) pour préparer des nanomatériaux durables. Les microfibrilles de cellulose (MFC) chargées positivement ou négativement sont assemblées en couches minces dans ces nanomatériaux par la méthode « Layer by Layer » (LbL) par trempage, pulvérisation ou spin assisté. Les différences entre ces films LbL à base de MFC et les films LbL à base de polymères standards sont discutées brièvement et sont reliées à la forme nanofibrillaire de la cellulose. Les MFC réagissent comme des nano-objets anisotropes et rigides. Les films LbL de MFC sont ensuite intégrés à des membranes de séparation, entre la couche polymérique de séparation et le support poreux, pour améliorer le débit à travers ces membranes. Ces films minces sont également déposés sur des aérogels de cellulose pour améliorer la stabilité de ces aérogels en milieu aqueux. Dans les deux applications, les résultats était encouragent et montre une validation de principe. / Cellulose, one of the most abundant biopolymers, is used in this PhD work in its nanofibrillated form, 2-5 nm in diameter and microns long, to prepare sustainable nanomaterials. Both positively and negatively charged microfibrillated celluloses (MFC) are assembled in these nanomaterials using the versatile Layer by Layer (LbL) assembly methods: dipping, spray assisted-deposition and spin-assisted deposition. A brief comparison between the MFC based LbL assembled films and the standard polymeric LbL films is carried out. Thedifferences between the two species are related to the fibrillar form of cellulose. MFC behaves like rigid anisotropic nano-objects. MFC LbL assembled films are then integrated in separation membranes between active polymeric separation layers and a mechanically stable porous support to improve the flux through these membranes. MFC LbL assembled films are also coated on cellulosic aerogels to improve the wet stability of these aerogels. In both cases, results were encouraging and showed a proof of concept.

Page generated in 0.0848 seconds