Spelling suggestions: "subject:"microstructure development"" "subject:"icrostructure development""
1 |
POWDER METALLURGICAL PROCESSING OF TITANIUM AND ITS ALLOYSLiu, Hung-Wei 17 August 2011 (has links)
Titanium is well known for its excellent properties, such as high strength-to-weight ratio and outstanding corrosion resistance. However the high cost of this metal has confined its applications to those mostly within the aerospace and military industries. The high purchase price of titanium is primarily driven by the need for intricate metal extraction processes, as well as the sensitivity towards conventional metal working operations. Among the potential solutions, powder metallurgy (P/M) technology provides an economical approach to bring down the price of finished titanium products. However, there are still many problems, such as the residual porosity in the sintered body, that need to be overcome.
In this thesis, a fundamental study was carried out focusing on the P/M press-and-sinter technique, using commercially pure titanium (CP Ti) as well as two binary titanium alloys, namely Ti-Ni and Ti-Sn. The influence of several processing parameters including compaction pressure, lubricant type/concentration, sintering time/temperature were performed on both the CP and binary systems. The principal tools utilized for mechanical characterization were hardness and tensile testing, whereas optical microscopy, x-ray diffraction (XRD), and scanning electron microscopy were employed to identify the microstructural features present.
Press-and-sinter P/M strategies were successfully developed for all of the blends studied. For CP-Ti, a maximum tensile strength >750MPa and near full theoretical density (~99%) were achieved. Transitions in the size and the size distribution of pores and ?-Ti grains were also observed and quantified. It was found these transitions, as well as the powder impurities present (i.e. oxygen and carbon), greatly influenced the final mechanical properties. In the case of the binary alloys, it was shown that liquid phase sintering (LPS) significantly improved the sintered density for the Ti-10%Ni composition, when sintered at l100°C. A eutectic microstructure (CP-Ti + Ti2Ni), coupled with grains of CP-Ti, were identified as the principal phases present. On the other hand, the Ti-Sn alloys only showed a modest increase in sintered density compared to the CP-Ti, owing to the high solubility of Sn in Ti. In terms of crystal structure, XRD highlighted that the Sn containing samples were fully CP-Ti.
|
2 |
Komplexní studium jemnozrnných polykrystalů Cu a slitiny CuZr připravených metodami equal channel angular pressing a high pressure torsion / Complex investigation of fine-grained polycrystals of Cu and CuZr alloy processed by equal channel angular pressing a high pressure torsionSrba, Ondřej January 2012 (has links)
Title: Complex investigation of fine-grained polycrystals of Cu and CuZr alloy processed by equal channel angular pressing and high pressure torsion Author: RNDr.Ondřej Srba Department: Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University Prague Supervisor: Doc. RNDr. Miloš Janeček, CSc. Abstract: In the thesis the microstructure development, mechanical, elastic and corrosion properties of deformed specimens of pure Cu and binary alloy CuZr processed by equal channel angular pressing (ECAP) are investigated. Several properties of pure Cu processed by ECAP are compared with properties of the same material processed by high pressure torsion (HPT). The microstructure development is characterized in detail by several experimental techniques (light and electron microscopy, electron back scatter diffraction, positron annihilation spectroscopy, etc.). The microstructure development in specimens processed by ECAP is characterized by the continuous fragmentation of the initial coarse grain structure and the formation of new grains having the sizes in the submicrocrystalline range (of 460 nm and 260 nm in Cu and CuZr alloy, respectively). During the deformation by ECAP the fraction of high-angle grain boundaries, the dislocation density and the concentration of vacancies are...
|
3 |
Electron beam melting of Alloy 718 : Influence of process parameters on the microstructureKarimi Neghlani, Paria January 2018 (has links)
Additive manufacturing (AM) is the name given to the technology of building 3D parts by adding layer-by-layer of materials, including metals, plastics, concrete, etc. Of the different types of AM techniques, electron beam melting (EBM), as a powder bed fusion technology, has been used in this study. EBM is used to build parts by melting metallic powders by using a highly intense electron beam as the energy source. Compared to a conventional process, EBM offers enhanced efficiency for the production of customized and specific parts in aerospace, space, and medical fields. In addition, the EBM process is used to produce complex parts for which other technologies would be either expensive or difficult to apply. This thesis has been divided into three sections, starting from a wider window and proceeding to a smaller one. The first section reveals how the position-related parameters (distance between samples, height from build plate, and sample location on build plate) can affect the microstructural characteristics. It has been found that the gap between the samples and the height from the build plate can have significant effects on the defect content and niobium-rich phase fraction. In the second section, through a deeper investigation, the behavior of Alloy 718 during the EBM process as a function of different geometry-related parameters is examined by building single tracks adjacent to each other (track-by-track) andsingle-wall samples (single tracks on top of each other). In this section, the main focus is to understand the effect of successive thermal cycling on microstructural evolution. In the final section, the correlations between the main machine-related parameters (scanning speed, beam current, and focus offset) and the geometrical (melt pool width, track height, re-melted depth, and contact angle) and microstructural (grain structure, niobium-rich phase fraction, and primary dendrite arm spacing) characteristics of a single track of Alloy 718 have been investigated. It has been found that the most influential machine-related parameters are scanning speed and beam current, which have significant effects on the geometry and the microstructure of the single-melted tracks.
|
4 |
Beitrag zur thermomechanischen Werkstoffmodellierung am Beispiel von Walzprofilieren mit integrierter WärmebehandlungGuk, Anna 16 December 2021 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Auswirkung der induktiven Erwärmung beim Austenitisieren eines walzprofilierten Erzeugnisses vor dem Abschrecken auf seine mechanischen Eigenschaften und Mikrostruktur. Zur Beschreibung der Entwicklung von mechanischen Eigenschaften werden verschiedene empirische, semi-empirische sowie auf den experimentell ermittelten Kennwerten basierte physikalische Werkstoffmodelle herangezogen. Der Einfluss der schnellen induktiven Erwärmung auf die Gefüge¬entwicklung und die Einleitung der Entfestigungsprozesse wird dargelegt. Deren Auswirkung auf erzeugten Eigenspannungen wird simulativ abgebildet. Anhand der erzielten Ergebnisse wird eine Empfehlung zur Auslegung des Prozessfensters gegeben.:1 Einleitung
2 Stand der Technik
3 Zielsetzung und Aufgabenstellung
4 Versuchseinrichtungen und eingesetzte Methoden
5 Ergebnisse
6 Diskussion
7 Zusammenfassung und Ausblick / The present work focuses on the effect of inductive heating during austenitizing of a roll formed product before quenching on its mechanical properties and microstructure. To describe the development of mechanical properties various empirical, semi-empirical and physical material models based on the experimentally determined characteristic values are used. The influence of rapid inductive heating on the microstructure development and the initiation of softening processes is described. Their effect on generated residual stresses is simulated. Based on the obtained results, a recommendation for the design of the process window is given.:1 Einleitung
2 Stand der Technik
3 Zielsetzung und Aufgabenstellung
4 Versuchseinrichtungen und eingesetzte Methoden
5 Ergebnisse
6 Diskussion
7 Zusammenfassung und Ausblick
|
Page generated in 0.0736 seconds