• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthese, Fabrikation und Charakterisierung eines faserförmigen Zellträgermaterials auf Basis von Titan-oxo-carboxo-Clustern / Synthesis, fabrication and characterization of a fibrous scaffold based on titanium-oxo-carboxo-clusters

Christ, Bastian January 2019 (has links) (PDF)
In dieser Arbeit konnten ethanolische Sole aus TEOT und der metabolisierbaren α-Hydroxycarbonsäure Milchsäure (LA) in spinnfähige viskose Spinnmassen überführt werden und erstmalig über die Methode des Druckspinnens zu Mikrofasern prozessiert werden. Die hybriden Fasern sind intrinsisch stabil. Über FTIR- und 13C-MAS-NMR-Untersuchungen konnte gezeigt werden, dass in der Faser der Koordinationsmodus von LA an Ti sowohl im mono- als auch im bidentaten Modus (Nomenklatur bezogen auf die Säureeinheit) vorliegt. Die nähere Untersuchung des Degradationsverhaltens einer LA-Faser zeigte hauptsächlich die Freisetzung von Lactat und Ethanol innerhalb weniger Stunden. Danach kann kaum noch ein Massenverlust der Fasern nachgewiesen werden. Vermutlich ist die Degradationsgeschwindigkeit abhängig von der Sättigungskonzentration der wasserlöslichen Titanoxid-Spezies Ti(OH)4 und Ti(O)(OH)2. Die Löslichkeit dieser Verbindungen beträgt ca. 1 µmol/L. Die Freisetzung von Titanverbindungen an das Degradationsmedium konnte über ICP-Messungen und indirekt auch über NMR-Messungen der Degradationsprodukte in Lösung nachgewiesen werden. Nach ca. einer Woche in Lösung bildet sich der wasserlösliche metallorganische Komplex TiBALDH. Dieser Komplex zeigt keinen negativen Einfluss auf die Umwelt, so dass Zellkulturmedien, die in Kontakt mit den Fasermaterialien getreten sind, in Zukunft nach dem Autoklavieren gefahrlos entsorgt werden können. Zudem sollte keines der detektierten Abbauprodukte in den abgegebenen Mengen toxisch auf den humanen Organismus bei in vivo-Anwendungen wirken. Lactat und Ethanol können im menschlichen Organismus verstoffwechselt werden. TIBALDH ist dem im menschlichen Serum nachweisbaren Titan(IV)citrat-Komplex strukturell sehr ähnlich. Aufgrund der Tatsache, dass die Bildung von TiBALDH ca. 1 Woche dauert, ist die vorherige Bildung des Titan(IV)citrat-Komplexes im humanen Organismus wahrscheinlich. Weiterhin konnte das hybride Fasermaterial durch den Zusatz von basischen Stoffen neutralisiert werden und nach Vorkonditionierung der Fasern als nicht zytotoxisch eingestuft werden. Als Gegenionen wurde Ammonium, das biogene Amin Phenethylamin, die Aminosäure Phenylalanin und das Biopolymer CHI getestet. Für zukünftige Weiterentwicklungen können auch basische Wirkstoffe als Gegenionen herangezogen werden. Somit könnte das hybride Zellträgermaterial zusätzlich eine Drug-Delivery-Funktion erhalten. Die LA-Fasern verhalten sich nach dem Verspinnen sehr flexibel. Bei einer Lagerung bei RT jedoch verspröden diese sehr schnell innerhalb von 3 d. Diese Materialeigenschaft wurde im zweiten Teil der Arbeit näher untersucht und optimiert. Tempern des Fasermaterials bei 170 °C bewirkte eine Umlagerung der LA-Liganden zu AA-Liganden, aber keine Verbesserung der mechanischen Eigenschaften. Versuche einer getemperten LA-Faser mit CHI als Gegenion zeigte durchwegs positive Eigenschaften in den Zytotoxizitätstests und auf deren Oberfläche konnten Zellen der Zelllinien L929, 16HBE, HTB94 und MG63 erfolgreich kultiviert werden. Durch die Verwendung anderer metabolisierbarer α Hydroxycarbonsäuren konnten Rückschlüsse auf die chemische Zusammensetzung der Fasern gezogen werden. Die Fasern scheinen aus wenig untereinander vernetzen Titan-oxo-carboxo-Clustern der Summenformel [Ti6O6(OR)6(Carboxylat)6] (mit R = H2+, H, Et oder „Ti6O6(OR)5(Carboxylat)6“) zu bestehen. Durch Variation der verwendeten Säuren konnten die Wechselwirkungen der Cluster untereinander verstärkt werden, so dass beispielsweise eine Faser mit MA bedeutend flexiblere Eigenschaften – auch bei einer Lagerung für 3d bei RT aufweist. Des Weiteren konnte durch Lagerung dieser Faser bei 4 °C der Versprödungsprozess für mind. 1 Monat gestoppt werden. Eine Lagerung von Medizinprodukten bei 4 °C stellt in Ländern mit ausreichender Infrastruktur kein Problem dar. Aufbauend auf diesen Tatsachen und TGA-MS-Messungen konnte die These aufgestellt werden, dass sich zwischen den wenig untereinander vernetzten Titan-oxo-carboxo-Cluster direkt nach dem Verspinnen noch Wassermoleküle befinden. Diese Reste an Wasser verleihen – vermutlich aufgrund der Ausbildung von Wasserstoffbrückenbindungen – der Faser flexible Eigenschaften. Bei einer Lagerung bei RT entweichen diese Wasserreste und die Faser versprödet; bei einer Lagerung bei 4°C wird das Verdampfen des restlichen Wassers bedeutend verlangsamt. Die Faser mit den flexibelsten Eigenschaften konnte letztendlich durch die Verwendung des zweizähnigen Carboxylat-Liganden MalA erhalten werden. Zusammenfassend konnte in dieser Arbeit ein neuartiges faserförmiges Material auf Basis von Titan-oxo-carboxo-Clustern produziert werden, welches großes Potential besitzt als Zellträgermaterial Anwendung zu finden. Aufbauend auf den hier gewonnenen Ergebnissen können die mechanischen Eigenschaften weiter optimiert und die Anforderungen des gewünschten Zielgewebes feinjustiert werden. Zudem besteht die Möglichkeit dem Material Drug-Delivery-Eigenschaften zu verleihen. Somit könnte das Scaffold aus Mikrofasern neben den bereits integrierten chemischen und physikalischen Stimuli (die Oberflächenfunktionalitäten und die Oberflächentopographie der Fasern) auch durch freigesetzte Wirkstoffe Zellen zur gewünschten Differenzierung anregen. / In this thesis ethanolic sols out of the liquid sol gel precursor TEOT and metabolizable α-hydroxy carboxylic acids (e. g. LA) were transformed into spinnable viscous fluids and were processed for the first time to microfibers. These hybrid microfibers are intrinsic stable. FTIR- and 13C-MAS-NMR-measurements of the fibers show a monodentate as well as a bidentate coordination mode (with regard to the carboxylic unit) of LA to Ti. Degradation experiments show the release of lactate and ethanol within less hours. Afterwards no mass lost is detected anymore. The kinetics of fiber degradation might depend on the saturation concentration of the titanium oxide species Ti(OH)4 and Ti(O)(OH)2 in water. Their solubility in water is 1 µmol/L. The release of titanium containing compounds is detected indirectly by ICP- and NMR-measurements. This compound was identified as TIBALDH, which was shown having no negative impact on environment.[99, 160] Additionally the pH value of the hybrid fibers can be neutralized by adding basic compounds (ammonium, phenetylamine, phenylalanine or chitosan) to be classified as a non-cytotoxic material. LA fibers are very flexible after spinning. After storage at RT the fibers turn into a brittle material within 3 days. This property was investigated in the second part of the thesis. Fiber annealing at a temperature of 170 °C doesn’t result in an improvement of the mechanically properties. Nonetheless cytotoxicity assays of the annealed fibers show promising results and cell proliferation experiments show the proliferation of L929, 16HBE and HTB94 on the fibrous surface. Conclusion of the fiber composition can be drawn by using different metabolizable α-hydroxy carboxylic acids in fiber synthesis. Fibers seem to consist out of less crosslinked titanium-oxo-carboxo-clusters of the molecular formula [Ti6O6(OR)6(carboxylate)6] (with R = H2+, H, Et or „Ti6O6(OR)5(carboxylate)6“). By varying the carboxylates the interaction of the clusters can be enhanced. For instance a fibers with the acid MA shows better flexibility – even after storage at RT for 3 days. Additionally the brittling of fibers can be stopped for at least one months by a storage temperature of 4 °C. Referring to these results and TGA-measurements following hypothesis was put forward: Directly after fiber spinning water molecules are present in the small pores betwenn different titanium-oxo-carboxo-clusters. These water residuals reinforce fiber flexibility due to hydrogen bonds. After storing the fibers at RT residual water molecules will evaporate out of the fibers. Consequently the fibers are brittling. At a storage temperature of 4 °C the evaporation of water molecules is slowed down. Fibers containing MalA – an α-hydroxy carboxylic acid with two coordinating carboxylic groups – were determined as the most flexible fiber.
2

Fundamental investigations on the barrier effect of polyester micro fiber fabrics towards particle-loaded liquids induced by surface hydrophobization

Islam, Md. Nazirul 06 November 2004 (has links) (PDF)
As the title implies, the chief goal of the present work is the improvement of the barrier effects of textile fabrics in the medical sector, in particular, in the operating room, which would be an effective safeguard against the causative pathogens allowing the health workers to work in and around hostile atmospheres and to accomplish useful tasks. To overcome the inherent drawbacks of surgical gown from classical fibers of both natural and synthetic origins, polyester micro filament fabric, down to 0.62 dtex per filament, was used to substitute them. Two major pathways have been chosen to render the surface hydrophobic: - Wet-chemical treatment - Plasma modification For the maximum efficiency of a specific wet-chemical, the following application formulations were found to be best effective: pH =4-5 Drying temperature and time=100°C / 90s Pick-up = 80% Curing temperature and time= 160°C / 120s A range of physical and chemical parameters have been found exerting significant influence on the extent of modification of the material: - Wetting agent - Amount of fluorine content in the chemical - Subsequent heat treatment of the finished material after washing - Ironing of the fabric For the plasma enhanced surface fluorination the following plasma gases were used: - Saturated fluorine compounds: CF4 and C2F6 - Reducing agent: H2 and C2H4 The exposure of the substrate to a pure C2F6 discharge resulted in higher hydrophobicity than the substrates exposed to CF4 plasma. Stepwise increased mixture of H2 or C2H4 to a proportionally decreased amount of C2F6 plasma showed a gradual decrease in contact angle and a substantial increase in sliding angle values. In addition to the treatments with gas mixtures a two-step technique, i.e., treatment with C2H4 prior to C2F6 plasma, was applied that appeared to be very promising in modifying the surface characteristics. Both, the contact angles and the sliding angles remaining almost constant on a very high level with increasing amount of C2H4 in the feed composition. An essentially vital concern of the work was the characterization of the treatment effect comprising both physical and chemical aspects. By washing the materials for 20 times no significant impairment of hydrophobic character has been noticed in case of fluorocarbon finishing agents as well as by the surface treated with C2H4 followed by C2F6 plasma (i.e., a two-step technique), wherein a complete loss of hydrophobic effect washing the silicone-treated materials for 10 times was observed. In breathability aspect, the plasma modification was found to be the best-suited technique with zero reduction of air permeability in comparison to wet-chemical finishing. The barrier test as a measure of dye absorption was conducted using protein solution, synthetic and human blood and the efficiency were verified by colorimetric technique. In contrast to pure plasma treatments, modification of the fabric with plasma in two-step treatment as well as with wet-finishing method using fluorocarbon compounds were completely impervious to artificial and real blood. The most striking feature was the zero uptake of the protein solution by all treated surfaces.
3

Fundamental investigations on the barrier effect of polyester micro fiber fabrics towards particle-loaded liquids induced by surface hydrophobization

Islam, Md. Nazirul 30 November 2004 (has links)
As the title implies, the chief goal of the present work is the improvement of the barrier effects of textile fabrics in the medical sector, in particular, in the operating room, which would be an effective safeguard against the causative pathogens allowing the health workers to work in and around hostile atmospheres and to accomplish useful tasks. To overcome the inherent drawbacks of surgical gown from classical fibers of both natural and synthetic origins, polyester micro filament fabric, down to 0.62 dtex per filament, was used to substitute them. Two major pathways have been chosen to render the surface hydrophobic: - Wet-chemical treatment - Plasma modification For the maximum efficiency of a specific wet-chemical, the following application formulations were found to be best effective: pH =4-5 Drying temperature and time=100°C / 90s Pick-up = 80% Curing temperature and time= 160°C / 120s A range of physical and chemical parameters have been found exerting significant influence on the extent of modification of the material: - Wetting agent - Amount of fluorine content in the chemical - Subsequent heat treatment of the finished material after washing - Ironing of the fabric For the plasma enhanced surface fluorination the following plasma gases were used: - Saturated fluorine compounds: CF4 and C2F6 - Reducing agent: H2 and C2H4 The exposure of the substrate to a pure C2F6 discharge resulted in higher hydrophobicity than the substrates exposed to CF4 plasma. Stepwise increased mixture of H2 or C2H4 to a proportionally decreased amount of C2F6 plasma showed a gradual decrease in contact angle and a substantial increase in sliding angle values. In addition to the treatments with gas mixtures a two-step technique, i.e., treatment with C2H4 prior to C2F6 plasma, was applied that appeared to be very promising in modifying the surface characteristics. Both, the contact angles and the sliding angles remaining almost constant on a very high level with increasing amount of C2H4 in the feed composition. An essentially vital concern of the work was the characterization of the treatment effect comprising both physical and chemical aspects. By washing the materials for 20 times no significant impairment of hydrophobic character has been noticed in case of fluorocarbon finishing agents as well as by the surface treated with C2H4 followed by C2F6 plasma (i.e., a two-step technique), wherein a complete loss of hydrophobic effect washing the silicone-treated materials for 10 times was observed. In breathability aspect, the plasma modification was found to be the best-suited technique with zero reduction of air permeability in comparison to wet-chemical finishing. The barrier test as a measure of dye absorption was conducted using protein solution, synthetic and human blood and the efficiency were verified by colorimetric technique. In contrast to pure plasma treatments, modification of the fabric with plasma in two-step treatment as well as with wet-finishing method using fluorocarbon compounds were completely impervious to artificial and real blood. The most striking feature was the zero uptake of the protein solution by all treated surfaces.

Page generated in 0.0433 seconds