• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 54
  • 54
  • 20
  • 8
  • 8
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Development and Evaluation of a Permeation Plug Release Vessel (PPRV) for the Release of Perfluoromethylcyclohexane (PMCH) in Underground Mine Tracer Gas Studies

Jong, Edmund Chime 20 January 2014 (has links)
The use of sulfur hexafluoride (SF6) as a tracer gas for analyzing underground mine ventilation systems has been practiced for over 30 years. As a result, the methods used to release, sample, and analyze SF6 are well accepted. Although improvements are still being made to enhance the analysis of this tracer, the overall technique remains largely the same. However, as the complexity and size of underground mine ventilation networks increase, coupled with steadily rising SF6 background levels, the ability of a single gas to function as a convenient, rapid means of analysis diminishes. The utilization of multiple tracer gases can mitigate these problems by allowing for a more comprehensive evaluation using multi-zone techniques. A well-documented alternative in HVAC studies to SF6 as a tracer are perfluorocarbon tracers (PFT). Many PFTs exist as volatile liquids at room temperature and pressure. This characteristic prevents a PFT from being released using the same technique as SF6. This paper introduces a passive release method for PMCH. Details about the development of the permeation plug release vessel (PPRV) from creating a GC calibration curve for vapor PMCH to the final field evaluation are presented. The following study successfully developed a mine-scale PPRV. The PPRV is designed to passively deploy PMCH vapor at linear. An equation was derived in this study that allows the prediction of the release rate as a function of temperature and plug thickness. Details regarding the development of the PPRV from preliminary laboratory studies to final field evaluations are provided. / Ph. D.
52

A fogging scrubber to treat diesel exhaust: field testing and a mechanistic model

Tabor, Joseph Edward 27 July 2020 (has links)
Diesel particulate matter (DPM) is comprised of two main fractions, organic carbon (OC) and elemental carbon (EC). DPM is the solid portion of diesel exhaust and particles are submicron in size typically ranging from 10 to 1000 nanometers. DPM is a known respirable hazard and occupational exposure can lead to negative health effects. These effects can range from irritation of the eyes, nose, and throat to more serious respirable and cardiovascular diseases. Due to the use of diesel powered equipment in confined airways, underground mine environments present an increased risk and underground mine works can be chronically overexposed. Current engineering controls used to mitigate DPM exposure include cleaner fuels, regular engine maintenance, ventilation controls, and enclosed cabs on vehicles. However even with these controls in place, workers can still be overexposed. The author's research group has previously tested the efficacy of a novel, fog-based scrubber treatment for removing DPM from the air, in a laboratory setting. It was found that the fog treatment improved DPM removal by approximately 45% by number density compared to the control trial (fog off). The previous work stated thermal coagulation between the fog drops and the DPM, followed by gravitational settling of the drops to be the likely mechanisms responsible for the DPM removal. The current work investigated the efficacy of the fog treatment on a larger scale in an underground mine environment, by using a fogging scrubber to treat the entire exhaust stream from a diesel vehicle. A total of 11 field tests were conducted. Based on measurements of nanoparticle number concentration at the inlet and outlet of the scrubber, the fog treatment in the current work showed an average improvement in total DPM removal of approximately 55% compared to the control (fog off) condition. It was found that the treatment more effectively removed smaller DPM sizes, removing an average of 84 to 89% of the DPM in the 11.5, 15.4, and 20.5 nanometer size bins and removing 24 to 30% of the DPM in the 88.6, 115.5, and 154 nanometer size bins. These observations are consistent with expectations since the rate of coagulation between the DPM and fog drops should be greater for smaller diameters. Further analysis of the DPM removal was aided by the development of a mechanistic model of the fogging scrubber. The model uses the inlet data from the experimental tests as input parameters, and it outputs the outlet concentration of DPM for comparison to the experimental outlet data. Results provided support for the notion that DPM removal relies on DPM-fog drop coagulation, and subsequent removal of the DPM-laden drops as opposed to DPM removal by diffusion or inertial impaction of DPM directly to the walls. The model results suggest that inertial impaction of these drops to the scrubber walls is likely much more important than gravitational settling. Moreover, the ribbed geometry of the tubing used for the scrubber apparatus tested here appears to greatly enhance inertial impaction (via enhancement of depositional velocity) versus smooth-walled tubing. This is consistent with previous research that shows particle deposition in tubes with internally ribbed or wavy structures is enhanced compared to deposition in tubes with smooth walls. / Master of Science / Diesel particulate matter (DPM) describes the solid portion of diesel exhaust. These particles are in the nanometer size range (10-1000nm) and can penetrate deep within the lungs presenting a serious health hazard. Because of the use of diesel powered equipment in confined spaces, DPM presents an occupational hazard for underground mine workers. Even with the use of cleaner fuels, regular engine maintenance, proper ventilation, and enclosed vehicle cabs, workers can still be over exposed. Previous work has shown that a water fog treatment can help to remove DPM from the air in a laboratory setting. This removal is due to the DPM particles attaching to the drops, followed by the drops settling out of the air due to gravity or impacting the walls of a tube. To explore a full scale exhaust treatment, a fogging scrubber was built using a fogger and a long tube, and was tested in an underground mine on vehicle exhaust. Experimental results showed that the fog treatment was effective at removing DPM from the exhaust. On average, the fog improved DPM removal by about 55% compared to when the treatment was not employed (fog off). To better understand the mechanisms responsible for DPM removal in the scrubber, a computer model was generated. The model uses the inlet parameters from the field tests, such as inlet DPM and fog concentration and tube geometry, and predicts the scrubber outlet DPM concentration. The model results suggest that the primary way that DPM is removed from the system is by combining with fog drops, which then hit the scrubber tube walls. This effect is probably enhanced by the ribbed structure of the scrubber tubing used here, which may be important for practical applications.
53

Concepts in coalmine ventilation and development of the VamTurBurner© for extraction of thermal energy from underground ventilation air methane

Cluff, Daniel L. January 2014 (has links)
Climate change is emerging as a significant challenge in terms of the response needed to mitigate or adapt to the predicted global changes. Severe impacts due to rising sea-level, seasonal shifts, increased frequency and intensity of extreme weather events such as storms, floods or droughts have become accepted by the scientific community as a real and present threat to civilisation. The most significant impacts are expected in the Arctic, the Asian mega-deltas, Small Island Developing States (SIDS) and sub-Saharan Africa (IPCC 2007). There are two approaches to global climate change either mitigation or adaptation. This dissertation aims to provide the initial design concepts for a system to mitigate methane, a significant Greenhouse Gas (GHG), emitted from coalmines by ventilation air circulated through the underground workings. The VamTurBurner©, a Ventilation Air Methane (VAM) gas turbine based methane burning system, is proposed as a method of extracting the thermal energy from the VAM. A key aspect of the problem responsible for the difficulty in extracting the energy from VAM is the low concentration of methane in the high volume ventilation airflow. This approach recasts the concepts of combustion dynamics of a premixed fuel flow to that expected for VAM to ascertain the conditions conducive to combustion or oxidation of the methane in the ventilation air. A numerical model using Large Eddy Simulation (LES) to study the combustion dynamics revealed that the temperature of the incoming ventilation air is a key variable related to the concentration of the VAM. Computational Fluid Dynamics modeling was used to study the design features needed to engineer a system capable of providing the required temperature of the incoming ventilation air. Applications for the available thermal energy are discussed in terms of the potential to generate electricity with steam turbines, provide space heating, produce hot water for many uses, and use the heat for industrial drying or as desired. The efficiency of the energy system is enhanced when the output from the amount of natural gas or electricity purchased is compared to the output enhanced by the addition of methane, considered as free. The VamTurBurner© concept, as described in this dissertation, appears to be a viable method of mitigating atmospheric methane in the pursuit greenhouse gas reduction.
54

Fan And Pitch Angle Selection For Efficient Mine Ventilation Using Analytical Hierachy Process And Neuro Fuzzy Approach

Taghizadeh Vahed, Amir 01 May 2012 (has links) (PDF)
Ventilation is a critical task in underground mining operation. Lack of a good ventilation system causes accumulation of harmful gases, explosions, and even fatalities. A proper ventilation system provides adequate fresh air to miners for a safe and comfortable working environment. Fans, which provide air flow to different faces of a mine, have great impact in ventilation systems. Thus, selection of appropriate fans for a mine is the acute task. Unsuitable selection of a fan decreases safety and production rate, which increases capital and operational costs. Moreover, pitch angle of fans&rsquo / blades plays an important role in fan&rsquo / s efficiency. Therefore, selection of a fan and its pitch angle, which yields the maximum efficiency, is an emerging issue for an efficient mine ventilation. The main objective of this research study is to provide a decision making methodology for the selection of a main fan and its appropriate pitch angle for efficient mine ventilation. Nowadays, analytical hierarchy process as multi criteria decision making is used, and it yields outputs based on pairwise comparison. On the other hand, Fuzzy Logic as a soft computing method was combined with analytical hierarchy process and combined model did not yield appropriate results / because Fuzzy AHP increased uncertainty ratio in this study. However, fuzzy analytical hierarchy process might be inapplicable when it faces with vague and complex data set. Soft computing methods can be utilized for complicated situations. One of the soft computing methods is a Neuro-Fuzzy algorithm which is used in classification and DM issues. This study has two phases: i) selection of an appropriate fan using Analytical Hierarchy Process (AHP) and Fuzzy Analytical Hierarchy Process (Fuzzy AHP) and ii) selection of an appropriate pitch angle using Neuro-Fuzzy algorithm and Fuzzy AHP method. This study showed that AHP can be effectively utilized for main fan selection. It performs better than Fuzzy AHP because FAHP contains more expertise and makes problems more complex for evaluating. When FAHP and Neuro-Fuzzy is compared for pitch angle selection, both methodologies yielded the same results. Therefore, utilization of Neuro-Fuzzy in situation with complicated and vague data will be applicable.

Page generated in 0.1262 seconds