• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 103
  • 73
  • 26
  • 20
  • 10
  • 8
  • 8
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 303
  • 87
  • 68
  • 64
  • 64
  • 64
  • 58
  • 38
  • 36
  • 26
  • 24
  • 24
  • 22
  • 22
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Computational Investigation of the Photoisomerization of Novel N-Alkylated Indanylidene Pyrroline Biomimetic Switches

Ryazantsev, Mikhail N. 19 August 2010 (has links)
No description available.
182

Using MM-IRT-C to Explore the Relationship between Depression and Pre-employment Tests

King, Rachel Throop 26 April 2017 (has links)
No description available.
183

Field verification of Standard Installation Direct Design (SIDD) method for 610-mm diameter concrete pipes

Vaithianathan, Elangovan January 1998 (has links)
No description available.
184

An Indoor Path Loss Prediction Model using Wall Correction Factors for WLAN and 5G Indoor Networks

Obeidat, Huthaifa A.N., Asif, Rameez, Ali, N.T., Obeidat, O.A., Ali, N.T., Jones, Steven M.R., Shuaieb, Wafa S.A., Al-Sadoon, Mohammed A., Hameed, Khalid W.H., Alabdullah, A.A., Dama, Yousif A.S., Abd-Alhameed, Raed 02 April 2018 (has links)
Yes / A modified indoor path loss prediction model is presented, namely Effective Wall Loss Model (EWLM). The modified model is compared to other indoor path loss prediction models using simulation data and real-time measurements. Different operating frequencies and antenna polarizations are considered to verify the observations. In the simulation part, EWLM shows the best performance among other models as it outperforms two times the dual slope model which is the second-best performance. Similar observations were recorded from the experimental results. Linear attenuation and one slope models have similar behaviour, the two models parameters show dependency on operating frequency and antenna polarization.
185

Use Of Small Format Aerial Photography in NPS Pollution Control Applications

Fu, Youtong 20 March 2003 (has links)
An automated procedure was developed to identify and extract confined poultry facilities from color 35-mm slide imagery collected by the United States Department of Agriculture/Farm Service Agency (USDA/FSA). The imagery is used by the USDA/FSA to monitor compliance with various farm support programs and to determine crop production acreage within a given county. The imagery is generally available for all counties within the state on an annual basis. The imagery, however, is not flown to rigid specifications as flight height, direction, and overlap can vary significantly. The USDA/FSA attempts to collect imagery with reasonably clear skies, as visual interpretations could be drastically impacted by cloudiness. The goal of this study was to develop procedures to effectively utilize this imagery base to identify and extract poultry facilities using automated techniques based on image processing and GIS. The procedure involved pre-screening the slides to determine coverage, geopositioning to USGS quadrangle base, color scanning to convert slide image to a digital format and archiving each data file with a naming convention that would allow rapid retrieval in later analysis. Image processing techniques were developed for identifying poultry facilities based on spectral characteristics. GIS tools were used to select poultry facilities from an array of features with similar spectral characteristics. A training data set was selected from which the spectral characteristics of poultry facilities were analyzed and compared with background conditions. Poultry facilities were found to have distinguishable characteristics. Descriptive statistics were used to define the range of spectral characteristics encompassing poultry facilities. Thresholding analyses were then utilized to eliminate all image features with spectral characteristics outside of this range. Additional analyses were made to remove noise in the spectral image due to the sun angle, line of sight of camera, variation in roof reflectance due to rust and/or aging, shading by trees, etc. A primary objective in these analyses was to enhance the spectral characteristics for the poultry facility while, at the same time, retaining physical characteristics, i.e. the spectral characteristic is represented by a single blue color with a high brightness value. The techniques developed to achieve a single blue color involved the use of Principal Component Analysis (PCA) on the red color band followed by RGB to Hue and RGB to Saturation analyses on the red and green color bands, respectively, from the resulting image. The features remaining from this series of analyses were converted into polygons (shape file) using ArcView GIS, which was then used to calculate the area and perimeter of each polygon. The parameters utilized to describe the shape of a poultry house included width, length, compactness, length-width ratio, and polygon centroid analysis. Poultry facilities were found to have an average width of approximately 12.6m with a low standard deviation indicating that the widths of all houses were very similar. The length of poultry facilities ranged from 63m to 261m with and average length of 149m. The compactness parameter, which also is related to length and width, ranged from 30 to 130 with a mean value of approximately 57. The shape parameters were used by ArcView GIS to identify polygons that represent poultry facilities. The order of selection was found to be compactness followed by length-width ratio and polygon centroid analysis. A data set that included thirty 35-mm slide images randomly selected from the Rockingham County data set, which contained over 2000 slides, was used to evaluate the automated procedure. The slides contained 182 poultry houses previously identified through manual procedures. Seven facilities were missed and 175 were correctly identified. Ninety-seven percent (97%) of existing poultry facilities were correctly identified which compares favorably with the 97 % accuracy resulted by manual procedures. . The manual procedure described by Mostaghimi, et. al.(1999) only gave the center coordinates for each poultry facility. The automated procedure not only gives the center coordinate for each poultry building but also gives estimates for geometric parameters area, length and width along with an estimate of the capacity of building (i.e. number of birds), and waste load generated by birds including nutrient and bacteria content. The nutrient and bacteria load generated by each poultry facility is important information for conducting TMDL studies currently being developed for impaired Virginia streams. The information is expected to be very helpful to consultants and state agencies conducting the studies. Agricultural support agencies such as USDA/NRCS and USDA/FSA, Extension Service, consultants, etc. will find the information very helpful in the development of implementation plans designed to meet TMDL target water quality goals. The data also should be useful to Water Authorities for selection of appropriate treatment of water supplies and to county and local government jurisdictions for developing policies to minimize the degradation of water supplies. / Ph. D.
186

60 GHz Multi-Sector Antenna Array with Switchable Radiation-Beams for Small Cell 5G Networks

Ojaroudi Parchin, Naser, Jahanbakhsh Basherlou, H., Al-Yasir, Yasir I.A., Abd-Alhameed, Raed, Excell, Peter S. 01 October 2020 (has links)
Yes / A compact design of multi-sector patch antenna array for 60 GHz applications is presented and discussed in details. The proposed design combines five 1×8 linear patch antenna arrays, referred to as sectors, in a multi-sector configuration. The coaxial-fed radiation elements of the multi-sector array are designed on 0.2 mm Rogers RT5880 dielectrics. The array operates in the frequency range of 58-62 GHz and provides switchable directional/omnidirectional radiation beams with high gain and high directivity characteristics. The designed multi-sector array exhibits good performances and could be used in the fifth generation (5G) cellular networks. / European Union’s Horizon 2020 research and innovation programme under grant agreement H2020-MSCA-ITN-2016 SECRET-722424
187

A FIR Filter Embedded Millimeter-wave Front-end for High Frequency Selectivity

Kim, Hyunchul 01 February 2019 (has links)
Millimeter wave (mm-Wave) has become increasingly popular frequency band for next-generation high-speed wireless communications. In mm-Wave, the wireless channel path loss is severe, demanding a high output power in transmitters (Tx) to meet a required SNR in receivers (Rx). Due to the intractable speed-power tradeoff ingrained in silicon processes, however, achieving a high power at mm-Wave, particularly over W-band (> 90 GHz), is challenging in silicon power amplifiers. To relieve the output power burden, phased-arrays are widely adopted in mm-Wave wireless communication systems -- namely, by leveraging a parallel power combining in the space domain, inherent in the phased arrays, the required output power per array element can be reduced significantly with increasing array size. In large arrays ( > 100's -- 1000's number of arrays), the required output power per element could be small, typically around several 10's mW or less in silicon-based phased arrays. In such small-to-medium scale output power level, the static power dissipations by transistor knee voltage and passive components could be a significant portion of the output power, decreasing power efficiency of power amplifiers drastically. This poses a significant concern on the power efficiency of the large-scale silicon-based phased arrays in mm-Wave. Another critical problem in mm-Wave wireless systems design is the increase of passive reactive components loss caused by worsening skin depth effect and increasing dielectric loss through silicon substrate. This essentially degrades the reactive components quality factor (Q) and limits frequency selectivity of the silicon-based mm-Wave systems. This thesis tackles these two major technical challenges to provide high frequency selectivity with maintaining high power efficiency for future mm-Wave wireless systems over W-band and beyond. First, various high-efficiency techniques such as impedance tuning with a reactive component at a cascoding stage in conventional stacked power amplifiers or load-pull based inter-stage matching technique, rather than conventional conjugate matching, have been applied to W-band CMOS and SiGe BiCMOS amplifiers to improve power efficiency with 5-10 dBm output power level, suitable for a large phased array applications, as detailed in Chapter 2 and 3. Second, a 4-tap finite impulse response (FIR) filter based receiver architecture is presented in Chapter 4. The FIR filtered receiver leverages a sinc-pulse type frequency nulls built-in in the transmission-line based FIR filter's frequency response to increase frequency selectivity. The proposed FIR filtered receiver achieves > 40-dB image rejection by placing an image signal at the null frequency at D-band, one of the largest image rejection performance at the highest frequency band reported so far. / Ph. D. / Due to recent advances in Silicon based solid-state technologies, the interest towards the millimeter wave (mm-Wave) frequency band has been emerging for next-generation high-speed wireless communication applications. One of the most significant parameters in a communication system would be the output power of a transmitter. However, the output power is limited especially at mm-wave frequencies. A phased array is one of the viable solutions to overcome this burden by utilizing a parallel power combing in the space domain. The required output power per element can be relieved, typically around several tens of mill watts or less. There are two major factors limiting the output power, which are the high loss of passive and active devices. This dissertation presents solutions to overcome these challenges. In addition, a 4-tap finite impulse response (FIR) filter based receiver architecture is introduced, which rejects unwanted image signals in heterodyne systems by utilizing sinc-pulse type frequency nulls. The proposed FIR filter achieves more than 40 dB of image rejection at D-band (110-170 GHz), which is one of the highest filtering performance in the millimeter-wave frequency band.
188

Analysis of Advanced Diversity Receivers for Fading Channels

Gaur, Sudhanshu 15 January 2004 (has links)
Proliferation of new wireless technologies has rekindled the interest on the design, analysis and implementation of suboptimal receiver structures that provide good error probability performance with reduced power consumption and complexity particularly when the order of diversity is large. This thesis presents a unified analytical framework to perform a trade-off study for a class of hybrid generalized selection combining technique for ultra-wideband, spread-spectrum and millimeter-wave communication receiver designs. The thesis also develops an exact mathematical framework to analyze the performance of a dual-diversity equal gain combining (EGC) receiver in correlated Nakagami-m channels, which had defied a simple solution in the past. The framework facilitates efficient evaluation of the mean and variance of coherent EGC output signal-to-noise ratio, outage probability and average symbol error probability for a broad range of digital modulation schemes. A comprehensive study of various dual-diversity techniques with non-independent and non-identical fading statistics is also presented. Finally, the thesis develops some closed-form solutions for a few integrals involving the generalized Marcum Q-function. Integrals of these types often arise in the analysis of multichannel diversity reception of differentially coherent and noncoherent digital communications over Nakagami-m channels. Several other applications are also discussed. / Master of Science
189

CHARACTERIZING MESOSCALE FEATURES IN PBX 9501 WITH WITNESS PLATES

Austin David Koeblitz (18359919) 12 April 2024 (has links)
<p dir="ltr">The effects of geometric features on detonation behavior have been well documented and demonstrated through examples spanning large-scale shaped charges to microscale “hot spots”. While extensive research has characterized interactions at either of these extremes – the macroscale (> 1 mm) and the microscale (< 0.1 μm) – the mesoscale (0.1 μm to 1 mm) remains less understood due to historical difficulties associated with producing and studying mesoscale features. Recent advancements in additive manufacturing have begun to change this by enabling the ability to precisely generate structures with such features, generating significant research interest. Experimental studies are hindered, however, by a dependence on diagnostic techniques that have high equipment costs, significant infrastructure requirements, and rely on sophisticated timing techniques, all of which inhibit progress. This work demonstrates the use of witness plates to characterize mesoscale features in a more cost and time-efficient way, speeding up experimentation while maintaining repeatability. The results reveal that mesoscale features cause unique damage that can be easily interpreted with tests conducted at optimal standoff distances. Non-optimal standoff distances can cause this damage to be obscured by the formation of a large underlying crater or significant surface texturing caused by the bulk explosive.</p>
190

Silicon-based Microwave/Millimeter-wave Monolithic Power Amplifiers

Haque, Talha 30 March 2007 (has links)
There has been increased interest in exploring high frequency (mm-wave) spectrum (particularly the 30 and 60 GHz ranges), and utilizing silicon-based technology for reduced-cost monolithic millimeter integrated circuits (MMIC), for applications such as WLAN, inter-vehicle communication (IVC) automotive radar and local multipoint distribution system (LMDS). Although there has been a significant increase in silicon-based implementations recently, this area still has significant need for research and development. For example, one microwave/mm-wave front-end component that has seen little development in silicon is the power amplifier (PA). Two potential technologies exist for providing a solution for low-cost microwave/mm-wave power amplifiers: 1) Silicon-Germanium (SiGe) HBT and 2) Complementary metal-oxide semiconductor (CMOS). SiGe HBT has become a viable candidate for PA development since it exhibits higher gain and higher breakdown voltage limits compared to CMOS, while remaining compatible with BiCMOS technology. Also, SiGe is potentially lower in cost compared to other compound semiconductor technologies that are currently used in power amplifier design. Hence, this research focuses on design of millimeter-wave power amplifiers in SiGe HBT technology. The work presented in this thesis will focus on design of different power amplifiers for millimeter-wave operating frequencies. Amplifiers present the fundamental trade-off between linearity and efficiency. Applications at frequencies highlighted above tend to be point-to-point, and hence high linearity is required at the cost of lowered efficiency for these power amplifiers. The designed power amplifiers are fully differential topologies based on finite ground coplanar waveguide (FGC) transmission line technology, and have on-chip matching networks and bias circuits. The selection and design of FGC lines is supported through full-wave EM simulations. Tuned single stub matching networks are realized using FGC technology and utilized for input and output matching networks. Two 30-GHz range SiGe HBT PA designs were carried out in Atmel SiGe2RF and IBM BiCMOS 8HP IC technologies. The designs were characterized first by simulations. The performance of the Atmel PA design was characterized using microwave/mm-wave on wafer test measurement setup. The IBM 8HP design is awaiting fabrication. The measured results indicated high linearity, targeted output power range, and expected efficiency performance were achieved. This validates the selection of SiGe HBT as the technology of choice of high frequency point-to-point applications. The results show that it is possible to design power amplifiers that can effectively work at millimeter-wave frequencies at lower cost for applications such as mm-wave WLAN and IVC where linearity is important and required transmitted power is much lower than in cellular handset power amplifiers. Moreover, recommendations are made for future research steps to improve upon the presented designs. / Master of Science

Page generated in 0.0802 seconds