Spelling suggestions: "subject:"amobile 1nternet aprotocol (amobile IP)"" "subject:"amobile 1nternet aprotocol (0mobile IP)""
1 |
Using link layer information to enhance mobile IP handover mechanism : an investigation into the design, analysis and performance evaluation of the enhanced mobile IP handover mechanism using link layer information schemes in the IP environmentAlnas, Mohamed Jimaa Ramadan January 2010 (has links)
Mobile computing is becoming increasingly important, due to the rise in the number of portable computers and the desire to have continuous network connectivity to the Internet, irrespective of the physical location of the node. We have also seen a steady growth of the market for wireless communication devices. Such devices can only have the effect of increasing the options for making connections to the global Internet. The Internet infrastructure is built on top of a collection of protocols called the TCP/IP protocol suite. Transmission Control Protocol (TCP) and Internet Protocol (IP) are the core protocols in this suite. There are currently two standards: one to support the current IPv4 and one for the upcoming IPv6 [1]. IP requires the location of any node connected to the Internet to be uniquely identified by an assigned IP address. This raises one of the most important issues in mobility because, when a node moves to another physical location, it has to change its IP address. However, the higher-level protocols require the IP address of a node to be fixed for identifying connections. The Mobile Internet Protocol (Mobile IP) is an extension to the Internet Protocol proposed by the Internet Engineering Task Force (IETF) that addresses this issue. It enables mobile devices to stay connected to the Internet regardless of their locations, without changing their IP addresses and, therefore, an ongoing IP session will not be interrupted [2, 3, 4]. More precisely, Mobile IP is a standard protocol that builds on the Internet Protocol by making mobility transparent to applications and higher-level protocols like TCP. However, before Mobile IP can be broadly deployed, there are still several technical barriers, such as long handover periods and packet loss that have to be overcome, in addition to other technical obstacles, including handover performance, security issues and routing efficiency [7]. This study presents an investigation into developing new handover mechanisms based on link layer information in Mobile IP and fast handover in Mobile IPv6 environments. The main goal of the developed mechanisms is to improve the overall IP mobility performance by reducing packet loss, minimizing signalling overheads and reducing the handover processing time. These models include the development of a cross-layer handover scheme using link layer information and Mobile Node (MN) location information to improve the performance of the communication system by reducing transmission delay, packet loss and registration signalling overheads. Finally, the new schemes are developed, tested and validated through a set of experiments to demonstrate the relative merits and capabilities of these schemes.
|
2 |
Using Link Layer Information to Enhance Mobile IP Handover Mechanism. An investigation in to the design, analysis and performance evaluation of the enhanced Mobile IP handover mechanism using link layer information schemes in the IP environment.Alnas, Mohamed J.R. January 2010 (has links)
Mobile computing is becoming increasingly important, due to the rise in the number of
portable computers and the desire to have continuous network connectivity to the
Internet, irrespective of the physical location of the node. We have also seen a steady
growth of the market for wireless communication devices. Such devices can only have
the effect of increasing the options for making connections to the global Internet. The
Internet infrastructure is built on top of a collection of protocols called the TCP/IP
protocol suite. Transmission Control Protocol (TCP) and Internet Protocol (IP) are the
core protocols in this suite. There are currently two standards: one to support the current
IPv4 and one for the upcoming IPv6 [1]. IP requires the location of any node connected
to the Internet to be uniquely identified by an assigned IP address. This raises one of the
most important issues in mobility because, when a node moves to another physical
location, it has to change its IP address. However, the higher-level protocols require the
IP address of a node to be fixed for identifying connections.
The Mobile Internet Protocol (Mobile IP) is an extension to the Internet Protocol
proposed by the Internet Engineering Task Force (IETF) that addresses this issue. It
enables mobile devices to stay connected to the Internet regardless of their locations,
without changing their IP addresses and, therefore, an ongoing IP session will not be
interrupted [2, 3, 4]. More precisely, Mobile IP is a standard protocol that builds on the Internet Protocol by making mobility transparent to applications and higher-level
protocols like TCP. However, before Mobile IP can be broadly deployed, there are still
several technical barriers, such as long handover periods and packet loss that have to be
overcome, in addition to other technical obstacles, including handover performance,
security issues and routing efficiency [7].
This study presents an investigation into developing new handover mechanisms based on
link layer information in Mobile IP and fast handover in Mobile IPv6 environments. The
main goal of the developed mechanisms is to improve the overall IP mobility
performance by reducing packet loss, minimizing signalling overheads and reducing the
handover processing time. These models include the development of a cross-layer
handover scheme using link layer information and Mobile Node (MN) location
information to improve the performance of the communication system by reducing
transmission delay, packet loss and registration signalling overheads.
Finally, the new schemes are developed, tested and validated through a set of
experiments to demonstrate the relative merits and capabilities of these schemes.
|
Page generated in 0.0712 seconds