• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of rigid solids movement in a viscous fluid / Etude du mouvement de solides rigides dans un fluide visqueux

Sabbagh, Lamis Marlyn Kenedy 22 November 2018 (has links)
Cette thèse est consacrée à l’analyse mathématique du problème du mouvement d’un nombre fini de corps rigides homogènes au sein d’un fluide visqueux incompressible homogène. Les fluides visqueux sont classés en deux catégories: les fluides newtoniens et les fluides non newtoniens. En premier lieu, nous considérons le système formé par les équations de Navier Stokes incompressible couplées aux lois de Newton pour décrire le mouvement de plusieurs disques rigides dans un fluide newtonien visqueux homogène dans l’ensemble de l’espace R^2. Nous montrons que ce problème est bien posé jusqu’à l’apparition de la première collision. Ensuite, nous éliminons tous les types de contacts pouvant survenir si le domaine fluide reste connexe à tout moment. Avec cette hypothèse, le système considéré est globalement bien posé. Dans la deuxième partie de cette thèse, nous montrons la non-unicité des solutions faibles au problème d’interaction fluide-solide 3D, dans le cas d’un fluide newtonien, après collision. Nous montrons qu’il existe des conditions initiales telles que nous pouvons étendre les solutions faibles après le temps pour lequel le contact a eu lieu de deux manières différentes. Enfin, dans la dernière partie, nous étudions le mouvement bidimensionnel d’un nombre fini de disques immergés dans une cavité remplie d’un fluide viscoélastique tel que des solutions polymériques. Les équations de Navier Stokes incompressible sont utilisées pour modéliser le solvant, dans lesquelles un tenseur de contrainte élastique supplémentaire apparaît comme un terme source. Dans cette partie, nous supposons que le tenseur de contrainte supplémentaire satisfait la loi différentielle d’Oldroyd ou sa version régularisée. Dans les deux cas, nous prouvons l’existence et l’unicité des solutions fortes locales en temps du problème considéré. / This thesis is devoted to the mathematical analysis of the problem of motion of afinite number of homogeneous rigid bodies within a homogeneous incompressible viscous fluid. Viscous fluids are classified into two categories: Newtonian fluids, and non-Newtonian fluids. First, we consider the system formed by the incompressible Navier-Stokes equations coupled with Newton’s laws to describe the movement of several rigid disks within a homogeneous viscous Newtonian fluid in the whole space R^2. We show the well-posedness of this system up to the occurrence of the first collision. Then we eliminate all type of contacts that may occur if the fluid domain remains connected at any time. With this assumption, the considered system is well-posed globally in time. In the second part of this thesis, we prove the non-uniqueness of weak solutions to the fluid-rigid body interaction problem in 3D in Newtonian fluid after collision. We show that there exist some initial conditions such that we can extend weak solutions after the time for which contact has taken place by two different ways. Finally, in the last part, we study the two-dimensional motion of a finite number of disks immersed in a cavity filled with a viscoelastic fluid such as polymeric solutions. The incompressible Navier–Stokes equations are used to model the flow of the solvent, in which the elastic extra stress tensor appears as a source term. In this part, we suppose that the extra stress tensor satisfies either the Oldroyd or the regularized Oldroyd constitutive differential law. In both cases, we prove the existence and uniqueness of local-in-time strongsolutions of the considered moving-boundary problem.
2

Étude mathématique d'écoulements de fluides viscoélastiques dans des domaines singuliers

Salloum, Zaynab 25 June 2008 (has links) (PDF)
Cette thèse est consacrée à l'analyse mathématique de trois problèmes d'écoulements de fluides viscoélastiques de type Oldroyd. Tout d'abord, nous étudions des écoulements stationnaires faiblement compressibles dans un domaine borné avec des conditions au bord de type "rentrante-sortante". Nous étudions aussi le problème d'écoulements stationnaires faiblement compressibles dans un coin convexe. En utilisant une méthode de point fixe (premier et deuxième problèmes) et une décomposition de Helmoltz (deuxième problème), nous montrons des résultats d'existence et d'unicité des solutions. Nous étudions également le cas d'un écoulement non stationnaire. Nous montrons un résultat d'existence locale et un résultat d'existence globale, avec des conditions initiales suffisamment petites, pour des fluides compressibles. Nous démontrons aussi la convergence du modèle d'écoulement viscoélastique compressible à faible nombre de Mach vers le modèle incompressible lorsque les données initiales sont "bien préparées"
3

Étude mathématique d’écoulements de fluides viscoélastiques dans des domaines singuliers / Mathematical study of viscoelastic fluid flows in singular domains

Salloum, Zaynab 25 June 2008 (has links)
Cette thèse est consacrée à l’analyse mathématique de trois problèmes d’écoulements de fluides viscoélastiques de type Oldroyd. Tout d’abord, nous étudions des écoulements stationnaires faiblement compressibles dans un domaine borné avec des conditions au bord de type "rentrante-sortante". Nous étudions aussi le problème d’écoulements stationnaires faiblement compressibles dans un coin convexe. En utilisant une méthode de point fixe (premier et deuxième problèmes) et une décomposition de Helmoltz (deuxième problème), nous montrons des résultats d’existence et d’unicité des solutions. Nous étudions également le cas d’un écoulement non stationnaire. Nous montrons un résultat d’existence locale et un résultat d’existence globale, avec des conditions initiales suffisamment petites, pour des fluides compressibles. Nous démontrons aussi la convergence du modèle d’écoulement viscoélastique compressible à faible nombre de Mach vers le modèle incompressible lorsque les données initiales sont "bien préparées" / In this PHD thesis, we study three problems for viscoelastic flows of Oldroyd type. First, we study steady flows of slightly compressible in a bounded domain with non-zero velocities on the boundary ; the pressure and the extra-stress tensor are prescribed on the part of the boundary corresponding to entering velocity. This causes a weak singularity in the solution at the junction of incoming and outgoing flows. We also study the problem of steady flows of slightly compressible fluids with zero boundary conditions in a domain with an isolated corner point. Using a method of fixed point (first and second problems) and a Helmoltz decomposition (second problem), we show some results of existence and uniqueness of solutions. In the last part, we study the case of a non-steady flow : we show some results of local and of global existence, with sufficiently small initial data, for compressible flows. The zero-Mach number limit is also established

Page generated in 0.0459 seconds