Spelling suggestions: "subject:"modélisation d’opérations unitaire"" "subject:"modélisation d’opérations sanitaires""
1 |
Contribution à l'élaboration d'un outil de simulation de procédés de transformation physico-chimique de matières premières issues des agro ressources : application aux procédés de transformation de biopolymères par extrusion réactive / Contribution to the elaboration of a process simulator for the physicochemical transformation of bio-based materials : application to the reactive extrusion of biopolymersVille d'Avray, Marie-Amélie de 05 July 2010 (has links)
Le développement des bioraffineries repose sur une conception optimisée d’installations industrielles en synergie comportant un grand nombre de flux de matière et d’opérations unitaires. Le recours à des simulateurs de procédés présente un intérêt certain dans la conception, l’analyse et l’optimisation de tels procédés. Souhaitant initier le développement d’un outil de simulation adapté à ce secteur, nous nous sommes appuyés sur l’exemple d’un procédé d’oxydation de biopolymères par extrusion réactive. Les procédés d’extrusion réactive sont caractérisés par un couplage intime entre écoulement, thermique et cinétiques réactionnelles. Les modalités de ce couplage dépendent des réactions visées. Souhaitant proposer un modèle flexible, intégrable dans un simulateur statique de procédés, et permettant d’atteindre un bon compromis entre la prédictivité et la quantité d’essais nécessaires pour ajuster les paramètres du modèle, nous avons opté pour une approche de modélisation mixte reposant à la fois sur une représentation de l’écoulement à l’aide de réacteurs idéaux et sur des lois de la mécanique des fluides. L’écoulement est modélisé par une cascade de réacteurs continus parfaitement agités (RCPA) avec reflux. Chaque RCPA est caractérisé par un taux de remplissage qui dépend des conditions opératoires. Le calcul du taux de remplissage des RCPA, de la pression matière et des débits circulant entre les RCPA en régime permanent est effectué en réalisant un bilan matière sur chaque RCPA. La température matière dans chacun des RCPA est calculée grâce à un bilan thermique. La modification chimique du matériau est décrite à l’aide de trois réactions : l’oxydation dépolymérisante, la formation de groupements fonctionnels (carbonyles et carboxyles) et la dégradation thermomécanique du biopolymère sous l’effet de la chaleur et des contraintes de cisaillement. L’établissement des équations de bilan de population auxquelles on applique la méthode des moments, permet de calculer simultanément les masses molaires moyennes en nombre et en poids du polymère ainsi que la teneur en agent oxydant dans chacun des RCPA. La viscosité est reliée à masse molaire moyenne. Un algorithme de calcul itératif permet de coupler le bilan matière, le bilan thermique et le calcul réactionnel. Les données expérimentales nécessaires à la validation du modèle ont été fournies par la plate-forme expérimentale mise au point au CVG (Centre de Valorisation des Glucides, Amiens) dans le cadre du programme Synthons. Une méthode d’ajustement des paramètres du modèle à partir d’un nombre minimal de données expérimentales a été proposée, permettant d’évaluer le caractère prédictif du modèle. Le modèle d’extrusion réactive ainsi ajusté a permis de reproduire les résultats expérimentaux obtenus pour différents matériaux, débits, vitesses de rotation, et sur deux extrudeuses detaille et de configuration différentes. L’intégration du modèle d’extrusion réactive dans un simulateur de procédés - le logiciel USIM PAC - a permis de simplifier sa mise en œuvre,offre des perspectives en optimisation et dimensionnement d’équipement et rend possible la simulation de l’opération d’extrusion réactive au sein d’une chaîne de transformation complète. / The development of biorefineries requires integrating and optimizing plants and handling a large number of material flows and unit operations. The development of a process simulator dedicated to this field would thus be of great interest. This is what we intended to initiate by relying on the example of the oxidation of biopolymers by reactive extrusion. Reactive extrusion is characterized by a strong coupling between flow, heat transfer and reaction kinetics. This coupling depends on the desired reactions. We here intended to elaborate aflexible model, being easily integrated into a static process simulator, and enabling to reach agood compromise between the predictive character of the model and the amount of experiments required to adjust model parameters. Therefore, we adopted a hybrid modelling approach combining a flow description based on ideal reactors and continuum mechanics laws. Flow is modeled as a cascade of continuous stirred tank reactors (CSTR) with possible backflow. Flow rates between CSTRs are calculated using physical laws taking into account the operating conditions and geometric parameters of the equipment. Each CSTR is characterized by a filling ratio, which depends on the operating conditions. The calculation of steady-state filling ratio, pressure and flow rates between the CSTRs is achieved by performing a material balance in each CSTR. Material temperature in each CSTR is calculated through a thermal balance. The chemical modification of the material is described using three reactions: the oxidative depolymerization, the formation of functional groups(carbonyl and carboxyl) and the thermomechanical degradation of the biopolymer induced by heating and shearing. The number-averaged and weight-averaged molecular weight of the biopolymer and the oxidant content in each CSTR are computed simultaneously by applying the moment operation to population balance equations. Viscosity is linked to the mean molecular weight. An iterative algorithm enables to couple material balance, thermal balance and reaction kinetics. The experimental data required for model validation were provided by the experimental platform developed at the CVG (Centre de Valorisation des Glucides,Amiens, France) in the frame of the Synthons program. A method was proposed in order to adjust model parameters with a minimal number of experimental data, enabling to assess the predictive character of the model. Once the parameters were adjusted, the reactive extrusion model enabled to reproduce the experimental results obtained with different raw materials,flow rates, screw rotation speeds, and using two extruders with different size and screw configuration. The integration of the reactive extrusion model into a process simulator - the USIM PAC software - enabled to simplify its implementation. This constitutes a promising step in a perspective of process optimization and scale-up, and enables to simulate a reactive extrusion operation within a global plant simulator.
|
Page generated in 0.188 seconds