• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation de l'impact de la sélection naturelle et culturelle sur la diversité génétique : cas de la transmission du succès reproducteur et des réseaux de gènes / Modelling the impact of natural and cultural selections on genetic diversity : fertility transmission and gene networks

Brandenburg, Jean-Tristan 19 December 2011 (has links)
Les forces de sélection sont un des moteurs de l’évolution de la diversité phénotypique et de la diversité génétique neutre et des zones codantes du génome. Cette sélection peut s’appliquer sur des caractères transmis génétiquement ou culturellement. Le travail effectué s’intéresse à ces deux processus de sélection. Nous avons étudié dans un premier temps les effets de la transmission intergénérationnelle de la fécondité sur la diversité génétique neutre puis dans un deuxième temps l’impact de la sélection sur des phénotypes codés par des réseaux de gènes sur le polymorphisme de ces gènes.La transmission de la fécondité est un phénomène culturel ou génétique qui se caractérise par une corrélation positive entre la taille de fratrie d’un individu et la taille de fratrie de ses enfants. Il a été observé tant dans des populations humaines qu’animales. Nous montrons, par l’outil de la modélisation, que ses effets et la possibilité de le détecter dépendent autant du type de données étudiées (génétiques ou généalogiques), que des différents types de transmission (uniparentale, biparentale). Nous montrons que d’autres phénomènes, tels que l’hétérogénéité du succès reproducteur des individus, peuvent fortement moduler son impact. Nous développons un certain nombre d’outils permettant de détecter ce phénomène de transmission de la fécondité tant sur des données généalogiques que sur des données génétiques relevant de différents modèles mutationnels (microsatellite, séquences, SNPs) et de différents types de transmission (haploïde ou diploïde, lié au sexe ou non). Nous avons appliqué ces outils notamment à trois populations humaines du Cilento en Italie (généalogies et ADN mitochondrial), des données d’Asie Centrale (chromosome Y) et des données HapMap (autosomes).La seconde partie de la thèse porte sur la modélisation de l’action de la sélection naturelle sur des caractères codés par des réseaux de régulation et décrit l’impact de ce type de sélection sur l’évolution du phénotype et sur la diversité des gènes sous-jacents. Un phénotype est le résultat des interactions entre différents gènes et leurs produits. Nous montrons que la sélection sur ce phénotype va modifier l’organisation du réseau de gènes ainsi que le niveau de polymorphisme des gènes du réseau. Par exemple, lorsque le phénotype optimal correspond à une expression médiane des gènes, les gènes les plus régulateurs vont être soumis à une plus forte perte de diversité. En revanche, si le phénotype optimal correspond à une expression très forte, ce sont les gènes les plus régulés qui vont être les plus contraints. Cette analyse a permis de montrer la complexité des relations entre sélection, réseaux de régulation, phénotypes et environnement. / Selective forces are one of the major determinants of the evolution of phenotypic diversity and genetic diversity, in neutral and coding zones of the genome. Selection can occur on genetically - or culturally - transmitted traits. This thesis considers these two selective processes. First, we studied the effects of intergenerational fertility transmission on neutral genetic diversity. Second, we considered the impact of selection on phenotypes coded by a gene network and on the polymorphism of genes within the network.Fertility transmission is a cultural or genetic phenomenon, which is characterised by a positive correlation between the sibship size of an individual and that of its children. It was observed both in human and animal populations. Using a modelling approach, we show that its effects and the possibility to detect it depend both on the kind of studied data (genetic or genealogical data) and on the different kind of transmission (uniparental, biparental). We show that other phenomena, such as the heterogeneity of reproductive success between individuals, can affect its effects. We develop several tools allowing to infer this phenomenon of fertility transmission on genealogical data, as well as on genetic polymorphism data that follows different mutational models (microsatellites, sequences, SNPs) and different transmission modes (haploid or diploid, sex-linked or not). We applied in particular these tools to three human populations of the Cilento area in Italy (genealogical and mitochondrial DNA data), to Central Asian data (Y chromosome) and to HapMap data (autosomes).The second part of this thesis deals with the modelling of the action of natural selection on traits coded by regulation networks and describes the impact of such selection on the evolution of the phenotype and of the underlying genes. A given phenotype is the result of the interaction between different genes and their products. We show that phenotypic selection will modify the gene network organisation, as well as the level of polymorphism of the genes involved in the network. For example, when the optimal phenotype corresponds to an intermediate level of gene expression, the most regulatory genes will lose much of their diversity. Conversely, if the optimal phenotype corresponds to a very strong expression of the genes, it will be the most regulated genes that will be the most constrained. This analysis allowed us to show the complexity of the relations between selection, regulation networks, phenotypes and the environment.
2

Apport de la modélisation individu-centrée spatialement explicite à la compréhension de L'expression d'une maladie transmissible : la peste bubonique à Madagascar

Laperrière, Vincent 13 November 2009 (has links) (PDF)
La peste est une maladie qui n'a jamais disparu et réémerge même dans certains pays, dont Madagascar. Les recherches consacrées à sa forme bubonique se sont d'abord concentrées sur l'identification des agents hôtes et vecteurs, rongeurs et puces, impliqués dans le cycle épidémiologique, de leur dépendance à l'égard des facteurs environnementaux et des processus de transmission du bacille. Ces facteurs et mécanismes opérant au niveau individuel sont désormais mieux connus, grâce aux acquis des études observationnelles et expérimentales. Un enjeu actuel des recherches concerne l'analyse des processus endémo-épidémiques d'expression de la peste, dans les populations d'hôtes et de vecteurs. Dans ce sens, les modèles mathématiques compartimentaux traditionnels échouent à prendre en compte l'effet, potentiellement décisif sur le devenir de l'infection, du caractère localisé et contingent de la transmission, lié à la distribution hétérogène et changeante des puces et rongeurs. Il est donc important de considérer l'hétérogénéité individuelle et le contexte géographique dans lequel la maladie se développe pour préciser le risque épidémiologique au niveau local et chercher à éviter les cas humains. L'objet de notre recherche est de montrer l'apport d'une démarche de modélisation individu-centrée s'inscrivant dans le paradigme de la complexité, intégrant les connaissances au niveau individuel et fondée sur un formalisme multi-agents, pour étudier localement les processus endémo-épidémiques de la peste bubonique. Le modèle, appliqué au foyer malgache, nous permet d'évaluer l'effet de l'abondance et de la distribution des rats et des puces sur le devenir de l'infection.
3

Sélection indirecte en évolution Darwinienne : Mécanismes et implications

Parsons, David 08 December 2011 (has links) (PDF)
Le modèle Aevol est un modèle d'évolution expérimentale in silico développé par Carole Knibbe et Guillaume Beslon pour étudier l'évolution de la structure des génomes. Aevol a permis d'identifier une très forte pression de sélection indirecte vers un certain niveau de variabilité mutationnelle du phénotype : la survie à long terme d'une lignée étant conditionnée à sa capacité à produire des mutations avantageuses sans pour autant produire trop de mutations délétères, un certain compromis entre robustesse et évolvabilité est indirectement sélectionné. Une conséquence de cette pression de sélection indirecte est le rôle central joué par le taux spontané de réarrangements chromosomiques dans la détermination de la structure du génome. Dans ce travail, nous avons modifié le modèle Aevol pour introduire d'une part un processus explicite de régulation de l'expression des gènes et d'autre part, une sensibilité aux similarités entre séquences dans les événements de recombinaison de l'ADN. Nous avons ainsi pu étudier l'effet de ces variations sur la sélection de second-ordre. Nous avons en particulier observé que celle-ci est extrêmement robuste aux choix de modélisation : les effets liés aux réarrangements sont en effet observés de la même façon lorsque les organismes possèdent un réseau de régulation (qui plus est, ces effets sont visibles sur le réseau lui-même), lorsque les réarrangements se produisent préférentiellement entre séquences similaires et lorsque les transferts horizontaux sont possibles. De plus, les effets de cette pression de sélection de second-ordre ne sont pas limités au niveau génomique : de forts taux de réarrangements tendent à donner lieu à des génomes présentant beaucoup d'opérons, très peu d'ARNs non-codants et des réseaux de régulation très simples. Au contraire, chez les organismes ayant évolué avec de faibles taux de réarrangement, la plupart des gènes sont transcrits sur des ARNs monocistroniques. Ces organismes possèdent un grand nombre d'ARNs non-codants et présentent des réseaux de régulation très complexes. Ces effets observés dans le modèle à différents niveaux d'organisation peuvent s'apparenter à de nombreuses caractéristiques observées chez les organismes réels. Ainsi les pressions sélectives indirectes observées grâce au model Aevol permettent de reproduire un large spectre de propriétés biologiques connues en ne modifiant que le seul taux de réarrangements dans le modèle. Ces mécanismes de sélection indirecte apparaissent donc comme de bons candidats pour expliquer ces mêmes observations sur les organismes réels.
4

Une approche bioénergétique pour la comparaison des traits d'histoire de vie de l'anchois et de la sardine du golfe de Gascogne / A bioenergetics approach to compare life history traits of anchovy and sardine in the Bay of Biscay

Gatti, Paul 16 December 2016 (has links)
L’anchois et la sardine appartiennent à la guilde des petits poissons pélagiques, qui tiennent une place considérable à l’échelle des écosystèmes et des pêcheries. Ces deux espèces sont très largement répandues dans les mers et océans du globe et souvent occupent les mêmes écosystèmes. Leurs populations montrent d’importantes fluctuations interannuelles de biomasses, dont les tendances ne suivent pas les mêmes schémas, voire sont parfois déphasées. Une littérature croissante suggère que ces dynamiques sont dues à des sensibilités relatives aux conditions environnementales différentes induites par des traits biologiques distincts. Bien que de prime abord anchois et sardines semblent très similaires, ils montrent notamment des stratégies alimentaires et reproductives quelque peu différentes. Comprendre ces divergences biologiques et de stratégies d’histoire de vie apparait donc essentiel pour appréhender les dynamiques passées et éventuellement anticiper les évolutions futures de ces stocks. L’objectif de cette thèse est de déterminer en quoi se démarquent ces deux espèces en termes de traits biologiques et d’histoire de vie sur une base physiologique. En effet, du fait de la complexité de potentielles interactions entre les traits biologiques et de leurs évolutions ontogéniques, il convient, pour répondre à cette question, de mettre en œuvre une approche intégratrice via la modélisation bioénergétique à l’échelle du cycle de vie. Dans un premier temps l’étude a été dédiée à un indice de condition : la densité énergétique (contenu énergétique par unité de masse). La densité énergétique résulte de nombreux processus physiologiques, intégrant ainsi l’historique des dépenses énergétiques diverses face aux gains acquis via l’alimentation. L’analyse de cet indice a notamment permis d’identifier divers effets sur la condition énergétique du poisson : l’espèce, la taille, la saison et la zone géographique. En lien avec l’énergie observée, un modèle du cycle de vie a été paramétré pour les deux espèces dans le golfe de Gascogne, afin de disposer d’un outil intégrateur, exploratoire et prédictif. Il s’agit d’un modèle bioénergétique basé sur la théorie du « Dynamic Energy Budget » (DEB). Ce cadre vise à prédire le cycle de vie d’un organisme, en fonction de forçages environnementaux, en simulant la résultante des différents flux d’énergies qui s’y produisent. Cette approche a notamment permis de souligner le caractère particulièrement structurant des stratégies reproductives sur le cycle bioénergétique annuel des deux espèces. / Anchovy and sardine belong to the guild of small pelagic fish and are of peculiar importance at the scales of ecosystems and fisheries. Both species are worldwide spread and commonly occur in the same ecosystems. They display large interannual variability in biomass with markedly different trends or even asynchronous. A growing literature suggests that those dynamics are due to respective sensibility to environmental conditions driven by different biological traits. A priori both species are very similar but show slightly distinct feeding behaviours and reproductive strategies. Understanding divergences in both species biology and life history strategies is thus crucial to understand and predict past and future dynamics of these stocks. The aim of this PHD is to assess how both species diverge in terms of biological and life history traits on a physiological basis. Owing to the complexity of biological traits, potential interactions among these traits and ontogenetic evolutions, to answer this question an integrative approach based on a bioenergetics model of the whole life cycle is requested. First the study focus on a condition index: the energy density (energy content per unit of mass). Energy density integrates historic of numerous physiological processes, both gain from food and diverse metabolic expenses. This analysis shows effects on the bioenergetics cycle of the fish, namely species, size, season and geographic area. Linked with bioenergetics data, a full life cycle model has been parametrised for both species in the Bay of Biscay, in order to get an integrative, predictive and exploratory tool. This model is based on the “Dynamic Energy Budget” theory. This theory aims at predicting the life cycle of an organism, using environmental forcing, by simulating energy fluxes inside the organism. This modelling approach underlines the particularly significant feature of reproductive strategies on the bioenergetics annual cycle of both species.
5

Sélection indirecte en évolution Darwinienne : Mécanismes et implications / Indirect selection in Darwinian evolution : mechanisms and implications

Parsons, David 08 December 2011 (has links)
Le modèle Aevol est un modèle d'évolution expérimentale in silico développé par Carole Knibbe et Guillaume Beslon pour étudier l'évolution de la structure des génomes. Aevol a permis d'identifier une très forte pression de sélection indirecte vers un certain niveau de variabilité mutationnelle du phénotype : la survie à long terme d'une lignée étant conditionnée à sa capacité à produire des mutations avantageuses sans pour autant produire trop de mutations délétères, un certain compromis entre robustesse et évolvabilité est indirectement sélectionné. Une conséquence de cette pression de sélection indirecte est le rôle central joué par le taux spontané de réarrangements chromosomiques dans la détermination de la structure du génome. Dans ce travail, nous avons modifié le modèle Aevol pour introduire d'une part un processus explicite de régulation de l'expression des gènes et d'autre part, une sensibilité aux similarités entre séquences dans les événements de recombinaison de l'ADN. Nous avons ainsi pu étudier l'effet de ces variations sur la sélection de second-ordre. Nous avons en particulier observé que celle-ci est extrêmement robuste aux choix de modélisation : les effets liés aux réarrangements sont en effet observés de la même façon lorsque les organismes possèdent un réseau de régulation (qui plus est, ces effets sont visibles sur le réseau lui-même), lorsque les réarrangements se produisent préférentiellement entre séquences similaires et lorsque les transferts horizontaux sont possibles. De plus, les effets de cette pression de sélection de second-ordre ne sont pas limités au niveau génomique : de forts taux de réarrangements tendent à donner lieu à des génomes présentant beaucoup d'opérons, très peu d'ARNs non-codants et des réseaux de régulation très simples. Au contraire, chez les organismes ayant évolué avec de faibles taux de réarrangement, la plupart des gènes sont transcrits sur des ARNs monocistroniques. Ces organismes possèdent un grand nombre d'ARNs non-codants et présentent des réseaux de régulation très complexes. Ces effets observés dans le modèle à différents niveaux d'organisation peuvent s'apparenter à de nombreuses caractéristiques observées chez les organismes réels. Ainsi les pressions sélectives indirectes observées grâce au model Aevol permettent de reproduire un large spectre de propriétés biologiques connues en ne modifiant que le seul taux de réarrangements dans le modèle. Ces mécanismes de sélection indirecte apparaissent donc comme de bons candidats pour expliquer ces mêmes observations sur les organismes réels. / The Aevol model is an in silico experimental evolution model that was specifically developped by Carole Knibbe to study the evolution of the structure of the genome. Using Aevol, a very strong second-order selective pressure towards a specific level of mutational variability of the phenotype was revealed: it was shown that since the survival of a lineage on the long term is conditionned to its ability to produce beneficial mutations while not loosing those previously found, a specific trade-off between robustness and evolvability is indirectly selected. A consequence of this indirect selective pressure is the central role played by the spontaneous rate of chromosomal rearrangements in determining the structure of the genome. More specifically, it was shown that because some rearrangements (large duplications and large deletions) have an impact not only arround their breakpoints but on the whole sequence between them, non-coding sequences are actually mutagenic for the coding sequences they surround. The consequence is a clear trend for organisms having evolved under high rearrangement rates to have very short genomes with hardly any non-coding sequences while organisms evolving in the context of low rearrangement rates have huge, mostly non-coding genomes. Here, we modified the Aevol model to introduce an explicit regulation of gene expression as well as a sensitivity to sequence similarity in DNA recombination events. We observed that the effects of the second-order pressure mentioned above are very robust to modelling choices: they are similarly observed when gene regulation is made available, when rearrangements occur preferentially between similar sequences and even when a biologically plausible process of horizontal transfer is allowed. Moreover, the effects of this second-order selective pressure are not limited to the genomic level: high rearrangement rates usually lead to genomes that have many polycistronic RNAs, almost no non-coding RNAs and very simple regulation networks. On the contrary, at low rearrangement rates organisms have most of their genes transcribed on monocistronic RNAs, they own a huge number of coding RNAs and present very complex and intricate regulation networks. These astounding effects at different levels of organization can account for many features found on real organisms. Thus, the indirect selective pressure that was identified thanks to the Aevol model allows to reproduce a large panel of known biological properties by changing the sole spontaneous rearrangement rate, making this pressure a good candidate for explaining these observations on real organisms.
6

Écologie spatiale des tortues marines dans le Sud-ouest de l’océan Indien : apport de la géomatique et de la modélisation pour la conservation / Spatial ecology of marine turtles in the South-West Indian Ocean : conservation insights from remote sensing and modeling.

Dalleau, Mayeul 30 September 2013 (has links)
Le déplacement animal joue un rôle déterminant dans la structuration spatiale et la dynamique des populations biologiques, en particulier des espèces fortement mobiles. L’espace et l’environnement font ainsi partie intégrante du cycle de vie des tortues marines. Ce travail de thèse propose de caractériser l’écologie spatiale des tortues marines, du stade juvénile au stade adulte, dans le Sud-ouest de l’océan Indien, principalement par l’usage de deux méthodes : la télémétrie satellitaire et la modélisation individu-centrée. Il montre en premier lieu que la phénologie de la reproduction de la tortue verte à travers la région est principalement liée à la température de surface de la mer au voisinage des sites de reproduction. Sont ensuite étudiés les patrons de dérive des nouveau-nés générés par les courants océaniques qui impacteraient inégalement leurs traits d’histoire de vie selon l’emplacement du site de naissance. Concernant le stade immature, les résultats suggèrent un cycle de développement trans-équatorial pour la tortue caouanne dans l’océan Indien. Pour le stade adulte, cette étude caractérise les couloirs et la connectivité migratoires de la tortue verte dans la région. Enfin, l’intégration de ces résultats permet de comprendre la structuration des patrons migratoires régionaux et leur influence sur la dynamique des populations. L’ensemble des connaissances acquises fournit un support concret d’aide à la décision pour la mise en place de plans de gestion et de conservation des tortues marines dans le Sud-ouest de l’océan Indien. Cela souligne l’importance d’une approche à grande échelle pour la protection d’un patrimoine biologique partagé par plusieurs nations. / Animal movement is crucial to the ecology of spatially structured population, particularly for highly mobile species. Marine turtles’ life cycle is indeed closely related to spatial and environmental factors. This work analyses the spatial ecology of marine turtles, from early juvenile to adult stages, in the Southwest Indian Ocean, primarily through the use of two methods: satellite tracking and individual-based modeling. Firstly, this analysis argues that green turtle’s reproductive phenology across the region is mainly related to the sea surface temperature in the vicinity of the nesting site. Then, it shows how drifting trajectories of hatchlings in oceanic currents unevenly influence their life history traits depending on the position of the natal site. By tracking late juvenile stage, this work also suggests a trans-equatorial developmental cycle for loggerhead turtle in the Indian Ocean. At adult stage, it describes migratory corridors and connectivity for green turtle across the region. Finally, an integrative approach considering all these results allows for an understanding of the regional migratory patterns and their influence on population dynamics. The results of this work provide a practical policy decision tool for management and conservation of marine turtles in the Southwest Indian Ocean and highlight the need for a large-scale approach in the protection of biological resources and heritage shared by multiple nations.
7

Structuration des génomes par sélection indirecte de la variabilité mutationnelle : une approche de modélisation et de simulation

Knibbe, Carole 04 December 2006 (has links) (PDF)
A long terme, le succès évolutif d'une lignée ne dépend pas seulement de la valeur adaptative de ses fondateurs. Il dépend également de la capacité des descendants à transmettre le génotype ancestral sans mutation délétère, tout en découvrant parfois des mutations favorables. Un niveau intermédiaire de variabilité mutationnelle peut donc être, de fait, indirectement sélectionné. En simulant, à l'aide d'un modèle individu-centré, l'évolution de génomes soumis à la fois à des mutations locales et à des réarrangements chromosomiques, nous montrons que la structure du génome est un levier d'ajustement du degré de variabilité : le nombre de gènes et, de façon plus surprenante, la quantité de non codant s'ajustent en fonction du taux de mutation et de l'impact moyen des mutations géniques, maintenant ainsi un niveau constant de variabilité mutationnelle. L'émergence de ces couplages surprenants suggère que les génomes ne sont pas seulement façonnés par les biais mutationnels et les coûts sélectifs directs, mais aussi, à plus long terme, par des pressions plus indirectes.

Page generated in 0.1438 seconds