• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 12
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 54
  • 54
  • 46
  • 38
  • 12
  • 11
  • 10
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

On A New Approach to Model Reference Adaptive Control

Naghmeh, Mansouri 24 July 2008 (has links)
The objective of adaptive control is to design a controller that can adjust its behaviour to tolerate uncertain or time-varying parameters. An adaptive controller typically consists of a linear time-invariant (LTI) compensator together with a tuning mechanism which adjusts the compensator parameters and yields a nonlinear controller. Because of the nonlinearity, the transient closed-loop behaviour is often poor and the control signal may become unduly large. Although the initial objective of adaptive control was to deal with time-varying plant parameters, most classical adaptive controllers cannot handle rapidly changing parameters. Recently, the use of a linear periodic (LP) controller has been proposed as a new approach in the field of model reference adaptive control [1]. In this new approach, instead of estimating plant parameters, the “ideal control signal” (what the control signal would be if the plant parameters and states were measurable) is estimated. The resulting controller has a number of desirable features: (1) it handles rapid changes in the plant parameters, (2) it provides nice transient behaviour of the closed-loop system, (3) it guarantees that the effect of the initial conditions declines to zero exponentially, and (4) it generates control signals which are modest in size. Although the linear periodic controller (LPC) has the above advantages, it has some imperfections. In order to achieve the desirable features, a rapidly varying control signal and a small sampling period are used. The rapidly time-varying control signal requires fast actuators which may not be practical. The second weakness of the LPC [1] is poor noise rejection behaviour. The small sampling period results in large controller gains and correspondingly poor noise sensitivity, since there is a clear trade-off between tracking and noise tolerance. As the last drawback, this controller requires knowledge of the exact plant relative degree. Here we extend this work in several directions: (i) In [1], the infinity-norm is used to measure the signal size. Here we redesign the controller to yield a new version which provides comparable results when the more common 2-norm is used to measure signal size, (ii) A key drawback of the controller of [1] is that the control signal moves rapidly. Here we redesign the control law to significantly alleviate this problem, (iii) The redesigned controller can handle large parameter variation and in the case that the sign of high frequency gain is known, the closed-loop system is remarkably noise-tolerant, (iv) We prove that in an important special case, we can replace the requirement of knowledge of the exact relative degree with that of an upper bound on the relative degree, at least from the point of view of providing stability, and (v) A number of approaches to improve the noise behaviour of the controller are presented. Reference: [1] D. E. Miller, “A New Approach to Model Reference Adaptive Control”, IEEE Transaction on Automatic Control, Vol. 48, No. 5, pages 743-756, May 2003.
12

On A New Approach to Model Reference Adaptive Control

Naghmeh, Mansouri 24 July 2008 (has links)
The objective of adaptive control is to design a controller that can adjust its behaviour to tolerate uncertain or time-varying parameters. An adaptive controller typically consists of a linear time-invariant (LTI) compensator together with a tuning mechanism which adjusts the compensator parameters and yields a nonlinear controller. Because of the nonlinearity, the transient closed-loop behaviour is often poor and the control signal may become unduly large. Although the initial objective of adaptive control was to deal with time-varying plant parameters, most classical adaptive controllers cannot handle rapidly changing parameters. Recently, the use of a linear periodic (LP) controller has been proposed as a new approach in the field of model reference adaptive control [1]. In this new approach, instead of estimating plant parameters, the “ideal control signal” (what the control signal would be if the plant parameters and states were measurable) is estimated. The resulting controller has a number of desirable features: (1) it handles rapid changes in the plant parameters, (2) it provides nice transient behaviour of the closed-loop system, (3) it guarantees that the effect of the initial conditions declines to zero exponentially, and (4) it generates control signals which are modest in size. Although the linear periodic controller (LPC) has the above advantages, it has some imperfections. In order to achieve the desirable features, a rapidly varying control signal and a small sampling period are used. The rapidly time-varying control signal requires fast actuators which may not be practical. The second weakness of the LPC [1] is poor noise rejection behaviour. The small sampling period results in large controller gains and correspondingly poor noise sensitivity, since there is a clear trade-off between tracking and noise tolerance. As the last drawback, this controller requires knowledge of the exact plant relative degree. Here we extend this work in several directions: (i) In [1], the infinity-norm is used to measure the signal size. Here we redesign the controller to yield a new version which provides comparable results when the more common 2-norm is used to measure signal size, (ii) A key drawback of the controller of [1] is that the control signal moves rapidly. Here we redesign the control law to significantly alleviate this problem, (iii) The redesigned controller can handle large parameter variation and in the case that the sign of high frequency gain is known, the closed-loop system is remarkably noise-tolerant, (iv) We prove that in an important special case, we can replace the requirement of knowledge of the exact relative degree with that of an upper bound on the relative degree, at least from the point of view of providing stability, and (v) A number of approaches to improve the noise behaviour of the controller are presented. Reference: [1] D. E. Miller, “A New Approach to Model Reference Adaptive Control”, IEEE Transaction on Automatic Control, Vol. 48, No. 5, pages 743-756, May 2003.
13

Design of Model Reference Adaptive Tracking Controllers for Mismatch Perturbed Nonlinear Systems with Nonlinear Inputs

Su, Tai-Ming 03 May 2004 (has links)
A simple design methodology of optimal model reference adaptive control (OMRAC) scheme with perturbation estimation for solving robust tracking problems is proposed in this thesis. The plant to be controlled belongs to a class of MIMO perturbed dynamic systems with input nonlinearity and time varying delay. The proposed robust tracking controller with a perturbation estimation scheme embedded is designed by using Lyapunov stability theorem. The control scheme contains three types of controllers. The first one is a linear feedback optimal controller, which is designed under the condition that no perturbation exists. The second one is an adaptive controller, it is used for adapting the unknown upper bound of perturbation estimation error. The third one is the perturbation estimation mechanism. The property of uniformly ultimately boundness is proved under the proposed control scheme, and the effects of each design parameter on the dynamic performance is also analyzed. An example is demonstrated for showing the feasibility of the proposed control scheme.
14

Hitting Back-Spin Balls by Robotic Table Tennis System based on Physical Models of Ball Motion

Hayakawa, Yoshikazu, Liu, Chunfang, Nonomura, Junko, Nakashima, Akira 09 1900 (has links)
10th IFAC Symposium on Robot Control International Federation of Automatic Control September 5-7, 2012. Dubrovnik, Croatia
15

Nonlinear oscillation and control in the BZ chemical reaction.

Li, Yongfeng 25 August 2008 (has links)
In this thesis, a reversible Lotka-Volterra model was proposed to study the nonlinear oscillation of the Belousov-Zhabotinsky(BZ) reaction in a closed isothermal chemical system. The reaction zone can be divided into two zones, oscillation zone and transition zone, where the oscillation time and the transition time and the number of the complete oscillations are estimated. By applying the geometric singular perturbation method, it was proved that there exist an oscillation axis in the oscillation zone, a strongly stable two-dimensional invariant manifold in transition zone, on which there is also a one-dimensional stable invariant manifold, which is the part of the central axis. There is no oscillation in the vicinity of the equilibrium, as indicated by Onsager's reciprocal symmetry relation. Furthermore, the damped oscillation is studied in terms of the action-action-angle variables. In the end, the model reference control technique is employed to control the oscillation amplitude in the BZ reaction.
16

Especificação do modelo de referência em projeto de controladores multivariáveis discretos

Silva, Gustavo Rodrigues Gonçalves da January 2016 (has links)
A escolha do modelo de referência é a principal tarefa a ser executada pelo projetista em um projeto de controle por modelo de referência. Uma má escolha do modelo de referência pode resultar em um desempenho de malha fechada que tem pouca semelhança com o especificado e a malha fechada pode até ser instável. Neste trabalho, esse problema será discutido no controle de plantas multivariáveis. O resultado experimental em uma planta de controle de nível de três tanques mostra uma aparentemente correta, ainda que ingênua, escolha do modelo de referência levando a um desempenho muito pobre em malha fechada. O problema é, então, analisado, expondo a ingenuidade do exemplo. Começa-se por reconhecer as restrições fundamentais impostas pelo sistema e, em seguida, deriva-se diretrizes gerais que respeitam essas restrições, para uma escolha eficaz do modelo de referência em sistemas multivariáveis. Também é proporcionada uma nova formulação para calcular o grau relativo mínimo de cada elemento do modelo de referência sem a necessidade de um modelo completo da planta. A aplicação destas orientações em simulações e na planta de três tanques ilustra sua eficácia. / The choice of the reference model is the main task to be performed by the designer in a model reference control design. A poor choice of the reference model may result in a closed-loop performance that bears no resemblance to the specifications and the closedloop may even be unstable. In this work we discuss this issue in the control of multivariable plants. Experimental results in a three tank level control plant show a seemingly correct, yet naive, choice of reference model leading to very poor closed-loop performance. The problem is then analyzed, exposing the naivete of the design example. We start by recognizing the fundamental constraints imposed by the system and then deriving general guidelines respecting these contraints for the effective choice of the reference model in multivariable systems. We also provide a novel formulation to compute the minimal relative degree of each element of the reference model without needing a complete model of the plant. The application of these guidelines to simulations and the three tank plant illustrates their effectiveness.
17

Especificação do modelo de referência em projeto de controladores multivariáveis discretos

Silva, Gustavo Rodrigues Gonçalves da January 2016 (has links)
A escolha do modelo de referência é a principal tarefa a ser executada pelo projetista em um projeto de controle por modelo de referência. Uma má escolha do modelo de referência pode resultar em um desempenho de malha fechada que tem pouca semelhança com o especificado e a malha fechada pode até ser instável. Neste trabalho, esse problema será discutido no controle de plantas multivariáveis. O resultado experimental em uma planta de controle de nível de três tanques mostra uma aparentemente correta, ainda que ingênua, escolha do modelo de referência levando a um desempenho muito pobre em malha fechada. O problema é, então, analisado, expondo a ingenuidade do exemplo. Começa-se por reconhecer as restrições fundamentais impostas pelo sistema e, em seguida, deriva-se diretrizes gerais que respeitam essas restrições, para uma escolha eficaz do modelo de referência em sistemas multivariáveis. Também é proporcionada uma nova formulação para calcular o grau relativo mínimo de cada elemento do modelo de referência sem a necessidade de um modelo completo da planta. A aplicação destas orientações em simulações e na planta de três tanques ilustra sua eficácia. / The choice of the reference model is the main task to be performed by the designer in a model reference control design. A poor choice of the reference model may result in a closed-loop performance that bears no resemblance to the specifications and the closedloop may even be unstable. In this work we discuss this issue in the control of multivariable plants. Experimental results in a three tank level control plant show a seemingly correct, yet naive, choice of reference model leading to very poor closed-loop performance. The problem is then analyzed, exposing the naivete of the design example. We start by recognizing the fundamental constraints imposed by the system and then deriving general guidelines respecting these contraints for the effective choice of the reference model in multivariable systems. We also provide a novel formulation to compute the minimal relative degree of each element of the reference model without needing a complete model of the plant. The application of these guidelines to simulations and the three tank plant illustrates their effectiveness.
18

Adaptive Control of Micro Air Vehicles

Matthews, Joshua Stephen 03 August 2006 (has links) (PDF)
Although PID controllers work well on Miniature Air Vehicles (MAVs), they require tuning for each MAV. Also, they quickly lose performance in the presence of actuator failures or changes in the MAV dynamics. Adaptive control algorithms that self tune to each MAV and compensate for changes in the MAV during flight are explored. However, because the autopilots on MAVs are small, many of the adaptive control algorithms like those that employ least squares estimation may take too much code space, memory, and/or computing power. In this thesis we develop several Lyapunov-based model reference adaptive control (MRAC) schemes that are both simple and efficient with the MAV autopilot resources. Most notable are the L1 controllers that have all the benefits of traditional MRACs but have reduced high frequency content to the actuators. The schemes control both roll and pitch through aileron and elevator commands. Flight test results for the schemes are also compared.
19

Design Of An Adaptive Autopilot For An Expendable Launch Vehicle

Plaisted, Clinton 01 January 2008 (has links)
This study investigates the use of a Model Reference Adaptive Control (MRAC) direct approach to solve the attitude control problem of an Expendable Launch Vehicle (ELV) during its boost phase of flight. The adaptive autopilot design is based on Lyapunov Stability Theory and provides a useful means for controlling the ELV in the presence of environmental and dynamical uncertainties. Several different basis functions are employed to approximate the nonlinear parametric uncertainties in the system dynamics. The control system is designed so that the desire dresponse to a reference model would be tracked by the closed-loop system. The reference model is obtained via the feedback linearization technique applied to the nonlinear ELV dynamics. The adaptive control method is then applied to a representative ELV longitudinal motion, specifically the 6th flight of Atlas-Centaur launch vehicle (AC-6) in 1965. The simulation results presented are compared to that of the actual AC-6 post-flight trajectory reconstruction. Recommendations are made for modification and future applications of the method for several other ELV dynamics issues, such as control saturation, engine inertia, flexible body dynamics, and sloshing of liquid fuels.
20

Geometry Modeling and Adaptive Control of Air-Breathing Hypersonic Vehicles

Vick, Tyler J. 27 October 2014 (has links)
No description available.

Page generated in 0.0592 seconds