Spelling suggestions: "subject:"model integration"" "subject:"godel integration""
41 |
AUTOMATED EVALUATION OF NEUROLOGICAL DISORDERS THROUGH ELECTRONIC HEALTH RECORD ANALYSISMd Rakibul Islam Prince (18771646) 03 September 2024 (has links)
<p dir="ltr">Neurological disorders present a considerable challenge due to their variety and diagnostic complexity especially for older adults. Early prediction of the onset and ongoing assessment of the severity of these disease conditions can allow timely interventions. Currently, most of the assessment tools are time-consuming, costly, and not suitable for use in primary care. To reduce this burden, the present thesis introduces passive digital markers for different disease conditions that can effectively automate the severity assessment and risk prediction from different modalities of electronic health records (EHR). The focus of the first phase of the present study in on developing passive digital markers for the functional assessment of patients suffering from Bipolar disorder and Schizophrenia. The second phase of the study explores different architectures for passive digital markers that can predict patients at risk for dementia. The functional severity PDM uses only a single EHR modality, namely medical notes in order to assess the severity of the functioning of schizophrenia, bipolar type I, or mixed bipolar patients. In this case, the input of is a single medical note from the electronic medical record of the patient. This note is submitted to a hierarchical BERT model which classifies at-risk patients. A hierarchical attention mechanism is adopted because medical notes can exceed the maximum allowed number of tokens by most language models including BERT. The functional severity PDM follows three steps. First, a sentence-level embedding is produced for each sentence in the note using a token-level attention mechanism. Second, an embedding for the entire note is constructed using a sentence-level attention mechanism. Third, the final embedding is classified using a feed-forward neural network which estimates the impairment level of the patient. When used prior to the onset of the disease, this PDM is able to differentiate between severe and moderate functioning levels with an AUC of 76%. Disease-specific severity assessment PDMs are only applicable after the onset of the disease and have AUCs of nearly 85% for schizophrenia and bipolar patients. The dementia risk prediction PDM considers multiple EHR modalities including socio-demographic data, diagnosis codes and medical notes. Moreover, the observation period and prediction horizon are varied for a better understanding of the practical limitations of the model. This PDM is able to identify patients at risk of dementia with AUCs ranging from 70% to 92% as the observation period approaches the index date. The present study introduces methodologies for the automation of important clinical outcomes such as the assessment of the general functioning of psychiatric patients and the prediction of risk for dementia using only routine care data.</p>
|
42 |
CyberWater: An open framework for data and model integrationRanran Chen (18423792) 03 June 2024 (has links)
<p dir="ltr">Workflow management systems (WMSs) are commonly used to organize/automate sequences of tasks as workflows to accelerate scientific discoveries. During complex workflow modeling, a local interactive workflow environment is desirable, as users usually rely on their rich, local environments for fast prototyping and refinements before they consider using more powerful computing resources.</p><p dir="ltr">This dissertation delves into the innovative development of the CyberWater framework based on Workflow Management Systems (WMSs). Against the backdrop of data-intensive and complex models, CyberWater exemplifies the transition of intricate data into insightful and actionable knowledge and introduces the nuanced architecture of CyberWater, particularly focusing on its adaptation and enhancement from the VisTrails system. It highlights the significance of control and data flow mechanisms and the introduction of new data formats for effective data processing within the CyberWater framework.</p><p dir="ltr">This study presents an in-depth analysis of the design and implementation of Generic Model Agent Toolkits. The discussion centers on template-based component mechanisms and the integration with popular platforms, while emphasizing the toolkit’s ability to facilitate on-demand access to High-Performance Computing resources for large-scale data handling. Besides, the development of an asynchronously controlled workflow within CyberWater is also explored. This innovative approach enhances computational performance by optimizing pipeline-level parallelism and allows for on-demand submissions of HPC jobs, significantly improving the efficiency of data processing.</p><p dir="ltr">A comprehensive methodology for model-driven development and Python code integration within the CyberWater framework and innovative applications of GPT models for automated data retrieval are introduced in this research as well. It examines the implementation of Git Actions for system automation in data retrieval processes and discusses the transformation of raw data into a compatible format, enhancing the adaptability and reliability of the data retrieval component in the adaptive generic model agent toolkit component.</p><p dir="ltr">For the development and maintenance of software within the CyberWater framework, the use of tools like GitHub for version control and outlining automated processes has been applied for software updates and error reporting. Except that, the user data collection also emphasizes the role of the CyberWater Server in these processes.</p><p dir="ltr">In conclusion, this dissertation presents our comprehensive work on the CyberWater framework's advancements, setting new standards in scientific workflow management and demonstrating how technological innovation can significantly elevate the process of scientific discovery.</p>
|
Page generated in 0.1376 seconds