Spelling suggestions: "subject:"modellsynchronisation"" "subject:"desynchronisation""
1 |
Role-based Runtime Model SynchronizationWerner, Christopher, Schön, Hendrik, Kühn, Thomas, Götz, Sebastian, Aßmann, Uwe 02 July 2021 (has links)
Model-driven Software Development (MDSD) promotes the use of multiple related models to realize a software system systematically. These models usually contain redundant information but are independently edited. This easily leads to inconsistencies among them. To ensure consistency among multiple models, model synchronizations have to be employed, e.g., by means of model transformations, trace links, or triple graph grammars. Model synchronization poses three main problems for MDSD. First, classical model synchronization approaches have to be manually triggered to perform the synchronization. However, to support the consistent evolution of multiple models, it is necessary to immediately and continuously update all of them. Second, synchronization rules are specified at design time and, in classic approaches, cannot be extended at runtime, which is necessary if metamodels evolve at runtime. Finally, most classical synchronization approaches focus on bilateral model synchronization, i.e., the synchronization between two models. Consequently, for more than two models, they require the definition of pairwise model synchronizations leading to a combinatorial explosion of synchronization rules. To remedy these issues, we propose a role-based approach for runtime model synchronization. In particular, we propose role-based synchronization rules that enable the immediate and continuous propagation of changes to multiple interrelated models (and back again). Additionally, our approach permits adding new and customized synchronization rules at runtime. We illustrate the benefits of role-based runtime model synchronization using the Families to Persons case study from the Transformation Tool Contest 2017.
|
2 |
Designing Round-Trip Systems by Change Propagation and Model PartitioningSeifert, Mirko 26 July 2011 (has links) (PDF)
Software development processes incorporate a variety of different artifacts (e.g., source code, models, and documentation). For multiple reasons the data that is contained in these artifacts does expose some degree of redundancy. Ensuring global consistency across artifacts during all stages in the development of software systems is required, because inconsistent artifacts can yield to failures. Ensuring consistency can be either achieved by reducing the amount of redundancy or by synchronizing the information that is shared across multiple artifacts. The discipline of software engineering that addresses these problems is called Round-Trip Engineering (RTE).
In this thesis we present a conceptual framework for the design RTE systems. This framework delivers precise definitions for essential terms in the context of RTE and a process that can be used to address new RTE applications. The main idea of the framework is to partition models into parts that require synchronization - skeletons - and parts that do not - clothings. Once such a partitioning is obtained, the relations between the elements of the skeletons determine whether a deterministic RTE system can be built. If not, manual decisions may be required by developers. Based on this conceptual framework, two concrete approaches to RTE are presented.
The first one - Backpropagation-based RTE - employs change translation, traceability and synchronization fitness functions to allow for synchronization of artifacts that are connected by non-injective transformations. The second approach - Role-based Tool Integration - provides means to avoid redundancy. To do so, a novel tool design method that relies on role modeling is presented. Tool integration is then performed by the creation of role bindings between role models.
In addition to the two concrete approaches to RTE, which form the main contributions of the thesis, we investigate the creation of bridges between technical spaces. We consider these bridges as an essential prerequisite for performing logical synchronization between artifacts. Also, the feasibility of semantic web technologies is a subject of the thesis, because the specification of synchronization rules was identified as a blocking factor during our problem analysis.
The thesis is complemented by an evaluation of all presented RTE approaches in different scenarios. Based on this evaluation, the strengths and weaknesses of the approaches are identified. Also, the practical feasibility of our approaches is confirmed w.r.t. the presented RTE applications.
|
3 |
Designing Round-Trip Systems by Change Propagation and Model PartitioningSeifert, Mirko 28 June 2011 (has links)
Software development processes incorporate a variety of different artifacts (e.g., source code, models, and documentation). For multiple reasons the data that is contained in these artifacts does expose some degree of redundancy. Ensuring global consistency across artifacts during all stages in the development of software systems is required, because inconsistent artifacts can yield to failures. Ensuring consistency can be either achieved by reducing the amount of redundancy or by synchronizing the information that is shared across multiple artifacts. The discipline of software engineering that addresses these problems is called Round-Trip Engineering (RTE).
In this thesis we present a conceptual framework for the design RTE systems. This framework delivers precise definitions for essential terms in the context of RTE and a process that can be used to address new RTE applications. The main idea of the framework is to partition models into parts that require synchronization - skeletons - and parts that do not - clothings. Once such a partitioning is obtained, the relations between the elements of the skeletons determine whether a deterministic RTE system can be built. If not, manual decisions may be required by developers. Based on this conceptual framework, two concrete approaches to RTE are presented.
The first one - Backpropagation-based RTE - employs change translation, traceability and synchronization fitness functions to allow for synchronization of artifacts that are connected by non-injective transformations. The second approach - Role-based Tool Integration - provides means to avoid redundancy. To do so, a novel tool design method that relies on role modeling is presented. Tool integration is then performed by the creation of role bindings between role models.
In addition to the two concrete approaches to RTE, which form the main contributions of the thesis, we investigate the creation of bridges between technical spaces. We consider these bridges as an essential prerequisite for performing logical synchronization between artifacts. Also, the feasibility of semantic web technologies is a subject of the thesis, because the specification of synchronization rules was identified as a blocking factor during our problem analysis.
The thesis is complemented by an evaluation of all presented RTE approaches in different scenarios. Based on this evaluation, the strengths and weaknesses of the approaches are identified. Also, the practical feasibility of our approaches is confirmed w.r.t. the presented RTE applications.
|
Page generated in 0.1238 seconds