Spelling suggestions: "subject:"molecularly imprinted folymers (MIPs)"" "subject:"molecularly imprinted colymers (MIPs)""
1 |
Effect of polymerisation by microwave on the physical properties of molecularly imprinted polymers (MIPs) specific for caffeineBrahmbhatt, H.A., Surtees, Alexander P.H., Tierney, C., Ige, O.A., Piletska, E.V., Swift, Thomas, Turner, N.W. 14 October 2020 (has links)
Yes / Molecularly Imprinted Polymers (MIPs) are a class of polymeric materials that exhibit highly specific recognition properties towards a chosen target. These “smart materials” offer robustness to work in extreme environmental conditions and cost effectiveness; and have shown themselves capable of the affinities/specificities observed of their biomolecular counterparts. Despite this, in many MIP systems heterogeneity generated in the polymerisation process is known to affect the performance. Microwave reactors have been extensively studied in organic chemistry because they can afford fast and well-controlled reactions, and have been used for polymerisation reactions; however, their use for creating MIPs is limited. Here we report a case study of a model MIP system imprinted for caffeine, using microwave initiation. Experimental parameters such as polymerisation time, temperature and applied microwave power have been investigated and compared with polymers prepared by oven and UV irradiation. MIPs have been characterised by BET, SEM, DSC, TGA, NMR, and HPLC for their physical properties and analyte recognition performance. The results suggest that the performance of these polymers correlates to their physical characteristics. These characteristics were significantly influenced by changes in the experimental polymerisation parameters, and the complexity of the component mixture. A series of trends were observed as each parameter was altered, suggesting that the performance of a generated polymer could be possible to predict. As expected, component selection is shown to be a major factor in the success of an imprint using this method, but this also has a significant effect on the quality of resultant polymers suggesting that only certain types of MIPs can be made using microwave irradiation. This work also indicates that the controlled polymerisation conditions offered by microwave reactors could open a promising future in the development of MIPs with more predictable analyte recognition performance, assuming material selection lends itself to this type of initiation. / DMU School of Pharmacy undergraduate project scheme for financial support.
|
2 |
Development of molecularly imprinted polymers for chemical sensors / Développement de polymères à empreintes moléculaires pour capteurs chimiquesLeibl, Nadja 07 December 2018 (has links)
Cette thèse propose une approche rationnelle pour le design de polymères à empreintes moléculaires (MIPs) pour la détection de nitro-explosifs. Les polymères à empreintes moléculaires qui miment la reconnaissance moléculaire biologique, ont l’avantage d’être stables dans des environnements sévères et peuvent adopter différentes formes physiques pour le couplage avec des transducteurs. Leur synthèse est basée sur la co-polymérisation de monomères fonctionnels et réticulants en présence de la molécule cible, ou comme dans cette thèse, d’un analogue ayant une structure proche de celle de la molécule cible. Cela conduit à la formation d’un réseau polymérique tridimensionnel rigide avec des sites de liaison complémentaires en taille, forme et position des groupes fonctionnels de la molécule cible ou de l’analogue. Pour identifier le meilleur monomère fonctionnel pour notre molécule cible, une approche rationnelle basée sur la modélisation moléculaire, la résonance magnétique nucléaire (RMN) et le titrage par calorimétrie isotherme (ITC) a été utilisée. Elle permet d’optimiser le mélange de pré-polymérisation pour identifier le monomère fonctionnel interagissant le plus fortement avec la molécule cible. Les résultats obtenus ont été confrontés à des études de liaison à partir de polymères synthétisés. La formulation polymérique ainsi conçue est intégrée aux surfaces du transducteur sous forme de nanoparticules, de films et de nanoparticules incorporés dans des films de polydopamine électropolymérisés. En plus des polymères traditionnels obtenus par polymérisation radicalaire classique sous forme de particules, des films de MIP à base de polydopamine électropolymérisés ont été étudiés en tant qu'approche alternative pour la détection électrochimique de nitro-explosifs. / This thesis proposes a rational design approach towards molecularly imprinted polymers (MIPs) for sensing nitro-explosives. Molecularly imprinted polymers are mimicking biological molecular recognition. They have the advantage to be stable in harsh environments and can be tailored into different physical forms for interfacing with transducers. Their synthesis is based on the co-polymerization of functional and cross-linking monomers in the presence of the target analyte or, as in this thesis, with a structural analogue leading to a rigid three-dimensional polymer network with binding sites complementary to the template in size, shape and position of the functional groups. The choice of the functional monomer was carried out with a rational design approach combining molecular modelling, nuclear magnetic resonance (NMR) and isothermal calorimetry (ITC) studies. This allows to optimize the pre-polymerization mixture in order to get strong complexation between the functional monomer and the template. The obtained results were confronted with binding studies performed on synthesized polymers. The thus designed polymer formulation was interfaced with transducer surfaces in form of nanoparticles, films and nanoparticles embedded into electro-polymerized polydopamine films. In addition to the traditional MIPs by free radical polymerization, molecularly imprinted in-situ electro-polymerized polydopamine films were investigated as an alternative approach for sensing nitro-explosives electrochemically.
|
3 |
Síntese de polímeros de impressão molecular e sua aplicação na técnica de extração em fase sólidaPeçanha, Bruna Rachel de Britto 23 March 2017 (has links)
Submitted by Biblioteca da Faculdade de Farmácia (bff@ndc.uff.br) on 2017-03-23T19:00:13Z
No. of bitstreams: 1
Peçanha, Bruna Rachel de Britto [Dissertação, 2012].pdf: 3907379 bytes, checksum: f2acabc3c1c39363b86f0d651d6b5936 (MD5) / Made available in DSpace on 2017-03-23T19:00:13Z (GMT). No. of bitstreams: 1
Peçanha, Bruna Rachel de Britto [Dissertação, 2012].pdf: 3907379 bytes, checksum: f2acabc3c1c39363b86f0d651d6b5936 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Polímeros de impressão molecular (MIPs) foram sintetizados e aplicados
como adsorventes na técnica de extração em fase sólida (EFS). O método de
polimerização por precipitação foi utilizado para a síntese dos polímeros, devido à
simplicidade de preparo, altos rendimentos e obtenção de partículas mais uniformes,
devido a não trituração do polímero. O MIP foi sintetizado com ácido metacrílico
(MAA) como monômero funcional, trimetacrilato de trimetilolpropano (TRIM) e
dimetacrilato de etilenoglicol (EDMA) como agentes de reticulação e o cloridrato de
amilorida (AMI) foi escolhido como molécula-molde. Diferentes proporções de MAA,
TRIM, EDMA, volume e tipo de solvente foram utilizadas para ajuste das condições
ideais de síntese. Os MIP foram avaliados quanto à capacidade de adsorção
comparando-se a polímeros sintetizados na ausência da molécula-molde (NIP,
polímeros não impressos). O solvente de elevada polaridade empregado na síntese
(THF:MeOH:H2O) permitiu o emprego da técnica para moléculas polares como AMI.
O controle no volume de solvente permitiu a obtenção de partículas maiores, de
modo que a EFS foi realizada em condições usuais, o que confere um potencial para
aplicação dessa técnica de polimerização na preparação de adsorventes para EFS.
O polímero que apresentou maior capacidade adsortiva no ensaio realizado em
tampão citrato-acetato pH 6,5 foi o MIP/NIP 12 (AMI:MAA:TRIM 1:8:10), com uma
taxa média de adsorção de 83 e 88% para NIP e MIP, respectivamente. A adsorção
foi elevada devido a interação iônica entre MAA e AMI promovida pelo controle de
pH, porém foi não específica. O polímero MIP/NIP 12 foi aplicado como adsorvente
na EFS, onde a recuperação de AMI foi avaliada nos resíduos de carregamento e
eluição com solventes. O carregamento com tampão citrato-acetato pH 6,5 foi o
ideal, favorecendo a interação iônica do polímero com o analito. A eluição total de
AMI do cartucho somente ocorre após lavagem com o solvente na presença de
ácido, que protona os grupos carboxila do polímero, rompendo assim a interação
iônica com o analito / Molecularly imprinted polymers (MIPs) were synthesized and applied as
adsorbents in solid-phase extraction technique (SPE). The polymers have been
synthesized by precipitation polymerization method because of its simplicity, high
yields and good control of final size and shape of particles. MIP was synthesized
using methacrylic acid (MAA) as functional monomer, trimethylolpropane
trimethacrylate (TRIM) and ethyleneglycol dimethacrylate (EDMA) as cross-linker
and amiloride hydrochloride (AMI) was chosen as template. Different ratios of MAA,
TRIM and EDMA, volume and type of solvent were used to adjust the optimal
synthesis conditions. The MIP were tested for adsorption capacity compared to the
polymers synthesized in the absence of template molecule (NIP, non-imprinted
polymers). The polar solvent mixture used (THF:MeOH:H2O) allowed the synthesis of
MIP of polar molecules as AMI. The solvent volume control afforded the larger
particles so the SPE was performed in the usual conditions, giving a potential
application for this polymerization technique in the preparation of adsorbents for
SPE. The polymers with higher adsorption capacity at the test performed in citrateacetate
buffer pH 6,5 was MIP/NIP 12 (AMI:MAA:TRIM 1:8:10) with adsorption rate
of 83 and 88% for NIP and MIP, respectively. The recognition of MIP was due to ionic
interaction between MAA and AMI promoted by pH control, but was not specific. The
polymer MIP/NIP 12 was used as a solid-phase extraction sorbent and the recoveries
of AMI was evaluated using different loading and elution conditions. The loading with
buffer citrate-acetate pH 6,5 was optimal, due to ionic interaction of the polymer with
the analyte. Total elution of AMI bound to the polymers only occurs after washing
with a acid-containing solvent, because of protonation of the carboxyl groups of the
polymer and disrupting the ionic interaction with the analyte
|
4 |
Development of organic microelectromechanical chemosensors based on fiber optics / Développement des chimiocapteurs microélectromécaniques organiques basé sur une fibre optiqueBokeloh, Frank 08 December 2017 (has links)
Un (bio)capteur classique est principalement composé de deux éléments essentiels : une couche réceptrice sensible à l’analyte à laquelle on s’intéresse et un transducteur qui permet de convertir une stimulation chimique / biologique en un signal physique mesurable. Dans le cas idéal, un capteur ne doit pas nécessiter de marquage de la cible, doit posséder de très grandes sensibilité et sélectivité envers elle, ne requiert qu’une faible quantité de cette dernière et doit présenter un temps de réponse très court. Au vu de ces critères, les microsystèmes électromécaniques (MEMS) sont des candidats très prometteurs dans le développement de capteurs. Les polymères fonctionnels, tels que les polymères à empreinte moléculaire (MIPs), sont une approche très intéressante dans l’utilisation des MEMS car ils peuvent être intégrés dans des technologies existantes de MEMS à base de silicium ou complètement remplacer ces technologies. Le but de cette thèse porte sur le développement d’un capteur MEMS composé de polymères (fonctionnels). Un chapitre initial (chapitre 2) introduit des nouveaux systèmes de fabrication de polymères fonctionnels. Des biopuces composées de MIPs imprimés par jet d’encre sont présentées ainsi qu’une technique basée sur la polymérisation radicale contrôlée qui permet le dépôt d’un fin enrobage de MIPs sur des microstructures. La deuxième partie de ce chapitre présente la fabrication de polymères à empreinte moléculaire par stéréolithographie deux-photons, qui peut être vue comme une extension de l’impression 3D. Afin d’illustrer cette technologie de prototypage rapide, deux capteurs composés de MIPs sont présentés : un capteur à grille de diffraction et un capteur en microlevier. Les deux principaux chapitres de ce manuscrit (chapitre 3 et 4) se focalisent sur le développement d’un nouveau concept de fabrication pour les capteurs MEMS. Ce concept est basé sur la polymérisation d’une poutre à fort ratio de forme à l’extrémité d’une fibre optique de télécommunication. Cette poutre a été mise en vibration à sa résonnance et a ainsi pu être utilisée comme un capteur à base de levier. Le capteur en polymère a permis l’intégration de MIPs comme élément récepteur et la reconnaissance sélective de l’antibiotique enrofloxacine. De plus, un nouveau système de mesure intégré est présenté dans le chapitre 4. Ce système de mesure intègre la fibre optique en guidant un rayon laser à travers elle ainsi qu’à travers le levier qui y est attaché.Le rayon lumineux sortant est ensuite focalisé sur une photodiode sensible à la position du rayon lumineux, permettant ainsi la mesure du spectre de résonance de la poutre en polymère. Ce système de mesure est caractérisé et ses performances sont présentées au travers de la détection de masse du levier en polymère et de mesures faites en milieu liquide. / A classical (bio)sensor consists of two key components: A receptor layer that detects the analyte of interest and the transducer which converts the chemical / biological stimuli into a physical measurable signal. Ideally a sensor is label-free, highly sensitive and selective towards the target, requires low sample amount and shows a fast response time. Regarding these criteria microelectromechanical systems (MEMS) offer great potential for the sensor development. One interesting approach for this development are functional polymer materials, such as molecularly imprinted polymers (MIPs), that can be either integrated to existing MEMS based on silicon or completely replace the silicon technology. The emphasis of this thesis is focused on the development of a MEMS sensor based on (functional) polymers. In an initial chapter (chapter 2) new fabrication schemes for functional polymers are introduced. Inkjet-printed biochips based on MIPs are presented and a technique based on controlled radical polymerization is shown that allows the deposition of thin MIP shells on a microfabricated pattern. In the second part of this chapter the fabrication of molecularly imprinted polymers by two-photon stereolithography is shown which can be seen as an extension of 3dimensional printing. As possible application of this rapid prototyping technology two sensors based on MIPs are introduced a diffraction grating sensor and a microcantilever sensor. The two main chapters of this manuscript (chapter 3 and chapter 4) report the development of a new fabrication concept for MEMS sensors. It is based on the polymerization of a high aspect ratio beam on the extremity of an optical telecommunication fiber which was actuated at resonance and thus could be used as a cantilever sensor. The polymer sensor allowed the integration of MIPs as sensing element and the selective recognition of the antibiotic enrofloxacin. Furthermore, is a new, integrated read-out scheme presented in chapter 4. This read-out scheme integrates the optical fiber, by guiding a probe laser beam through it and attached cantilever beam. The output light beam is then focused on a position sensitive photodiode and thus enabled to monitor the resonance spectra of the polymer beam. The read-out scheme is characterized and its performance is shown by demonstrating the mass sensitivity of the polymeric cantilever beam and by measurements in liquid environments.
|
Page generated in 0.1068 seconds