Spelling suggestions: "subject:"molekylär"" "subject:"molekylära""
1 |
Single-molecule Detection in situLarsson, Chatarina January 2009 (has links)
The human body contains a variety of different cell types that share a common genome, but differ in how they use the information encoded therein. Variation in molecular content exists even at the level of individual cells, and to provide deeper insight into complex cellular processes methods that permit analysis of each cell on its own are needed. This thesis presents molecular methods for localized detection of individual nucleic acid molecules. The developed methods are based on padlock probes and target-primed rolling circle amplification. Single-molecule detection sensitivity in combination with single-nucleotide genotyping selectivity enables detection of allelic DNA variants and closely related target sequences directly in cells. Padlock probes further enable multiplex detection of targets, and in combination with image analysis quantitative molecular data for individual cells can be acquired for large cell populations at a resolution that no other in situ detection method can provide at present. In this thesis, the in situ target-primed rolling circle amplification technique was first used for genotyping of a point mutation in the mitochondrial genome with padlock probes. This displayed mitochondrial DNA heterogeneity in cell populations. Application of the method on comet assay preparations showed that mitochondrial genomes are lost from these samples prior to analysis. Nuclear DNA targets, however, can be efficiently detected in corresponding samples. Padlock probes and rolling circle amplification are thus an attractive alternative to FISH analysis for localized DNA detection in comet assay samples. A method was also developed for localized detection of individual mRNA molecules with padlock probes and rolling circle amplification. This method provides unique possibilities to genotype allelic variants of transcripts in situ. mRNA expression is associated with substantial cell-to-cell variation and our presented method permits simultaneous visualization of multiple transcripts directly in complex tissue samples. Application of the methods presented in this thesis will enable new types of studies of biological samples from both normal and disease states.
|
2 |
Gråärtor : En oanvänd resurs i den moderna gastronominSjöström, Antonia January 2016 (has links)
No description available.
|
3 |
The Application of isotropic bicelles as model membranesAndersson, August January 2005 (has links)
<p>Isotropic bicelles are disc-shaped aggregates of lipids and detergents, and are suitable model systems for high-resolution NMR studies of membrane-interacting peptides. In this thesis the structures for the two peptides motilin and transportan were determined by homonuclear <sup>1</sup>H methods in the presence of bicelles, and the structure of the bovine prion protein peptide (bPrPp) was solved in the presence of DHPC micelles. All of these peptides were found to be largely a-helical when bound to the model membranes. In subsequent experiments both motilin and transportan were shown to reside on the surface of the bicelles, whereas bPrPp is more likely to have a transmembrane configuration. </p><p>NMR translational diffusion experiments revealed that the isotropic bicelles studied here are very large objects compared to what is regularly indicated by high-resolution NMR spectroscopy. Furthermore, these studies showed that all three peptides examined interact strongly with bicelles. Investigation of the NMR-relaxation of labeled sites in the peptides motilin and penetratin demonstrated that the overall rotational correlation times for these peptides do not reflect the bicellar size. Such decoupling of NMR relaxation from the dependence of overall size is also seen for the dynamics of the lipid molecules in the bicelles. It is therefore concluded that the overall size is not the sole determinant of the linewidths in NMR spectra, but that extensive motions within the bicelles also exert significant effects. </p><p>Another interesting observation is that the membrane-bound structures of the peptides motilin, transportan, penetratin and bPrPp are very similar, even though these peptides have very different biological functions. In contrast, considerably more variation is observed in the membrane-positioning and molecular dynamics of these peptides. Since the bicelles have been found to induce differences in membrane positioning and molecular dynamics compared to micelles, these model membranes are likely to be important in order to enhance our understanding of the biological function of membrane interacting peptides.</p>
|
4 |
A Biomimetic Manganese Model for Artificial Photosynthesis : Q-band Electron Paramagnetic Resonance Study of a Novel Mn2(II,III) ComplexKiflemariam, Jordanos January 2005 (has links)
<p>In natural oxygen-producing photosynthesis solar energy is stored as chemical energy, in carbohydrates, fats and amino acids, using water as electron source. The large transmembrane protein complex, PSII, is the key enzyme in the light-driven reactions. Water oxidation is accomplished by a triad in PSII in which the Mn-cluster plays an important role. In the artificial photosynthetic system, nature’s photosynthesis will be mimicked such that hydrogen, a sustainable energy source, can be produced from solar energy and water alone. Since water oxidiation requires the catalytic activity of a Mn-cluster in photosynthesis, different artificially constructed manganese complexes are investigated. </p><p>The dinuclear ([Mn<sub>2</sub>(II,III)L(µ-OAc)<sub>2</sub>]ClO<sub>4</sub>), where L is the X-anion of 2-(<i>N,N</i>-Bis(2-methylpyridyl)aminomethyl)-6-(<i>N</i>-(3,5-ditert-butylbenzyl-2-hydroxy)-<i>N</i>-(pyridylmethyl)aminomethyl)-4-methylphenol, an unsymmetric ligand with two coordinating phenolate groups, has been studied. The two Mn-ions are linked via a mono-µ-oxo bridge and two acetate ligands. Q-band Electron Paramagnetic Resonance was conducted on the Unsymmetric Mn<sub>2</sub>(II,III) Complex. Aquired results show that the complex has a 2600 Gauss broad signal (11 400-14 000 Gauss) with 14-17 lines at g~2 and hyperfines of 120 Gauss. This is consistent with previous X-band studies. Q-band spectra of the Unsymmetric Mn(II,III) display increased hyperfine resolution compared to Qband spectra of the symmetric complex, Mn<sub>2</sub>(bpmp)(µ-OAC)<sub>2</sub>. This is noticeable since Unsymmetric Mn2(II,III) and Mn<sub>2</sub> (bpmp)(µ-OAC)<sub>2</sub> partly overlap in low-frequency experiments (X-band EPR). </p><p>Further investigations are yet to be expected. Nevertheless, the conducted thesis study provides important knowledge in the futuristic goal of building an artificial super-complex.</p>
|
5 |
The Application of isotropic bicelles as model membranesAndersson, August January 2005 (has links)
Isotropic bicelles are disc-shaped aggregates of lipids and detergents, and are suitable model systems for high-resolution NMR studies of membrane-interacting peptides. In this thesis the structures for the two peptides motilin and transportan were determined by homonuclear 1H methods in the presence of bicelles, and the structure of the bovine prion protein peptide (bPrPp) was solved in the presence of DHPC micelles. All of these peptides were found to be largely a-helical when bound to the model membranes. In subsequent experiments both motilin and transportan were shown to reside on the surface of the bicelles, whereas bPrPp is more likely to have a transmembrane configuration. NMR translational diffusion experiments revealed that the isotropic bicelles studied here are very large objects compared to what is regularly indicated by high-resolution NMR spectroscopy. Furthermore, these studies showed that all three peptides examined interact strongly with bicelles. Investigation of the NMR-relaxation of labeled sites in the peptides motilin and penetratin demonstrated that the overall rotational correlation times for these peptides do not reflect the bicellar size. Such decoupling of NMR relaxation from the dependence of overall size is also seen for the dynamics of the lipid molecules in the bicelles. It is therefore concluded that the overall size is not the sole determinant of the linewidths in NMR spectra, but that extensive motions within the bicelles also exert significant effects. Another interesting observation is that the membrane-bound structures of the peptides motilin, transportan, penetratin and bPrPp are very similar, even though these peptides have very different biological functions. In contrast, considerably more variation is observed in the membrane-positioning and molecular dynamics of these peptides. Since the bicelles have been found to induce differences in membrane positioning and molecular dynamics compared to micelles, these model membranes are likely to be important in order to enhance our understanding of the biological function of membrane interacting peptides.
|
6 |
Lipoproteomics : A New Approach to the Identification and Characterization of Proteins in LDL and HDLKarlsson, Helen January 2007 (has links)
A proteomic approach was applied to examine the protein composition of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) in humans. LDL and HDL were isolated by density gradient ultracentrifugation, and proteins were separated with twodimensional gel electrophoresis (2-DE) and identified with peptide mass fingerprinting, using matrix-assisted laser desorption/ionization-time of flight mass spectrometry, and with amino acid sequencing using electrospray ionization tandem mass spectrometry. To improve the identification of low abundant proteins in silver stained 2-DE gels, 2,5-dihydroxybenzoic acid was used instead of α-cyano-4-hydroxycinnamic acid as matrix in the peptide mass fingerprinting procedure; this was demonstrated to give more matching peptide peaks, higher sequence coverage, and higher signal to noise ratio. Altogether 18 different proteins were demonstrated in LDL and/or HDL: three of these (calgranulin A, lysozyme C and transthyretin) have not been identified in LDL before. Apo C-II, apo C-III, apo E, apo A-I, apo A-IV, apo J, apo M, serum amyloid A-IV and α1-antitrypsin were found in both LDL and HDL, while apo B-100 (clone), calgranulin A, lysozyme C and transthyretin were found only in LDL, and apo A-II, apo C-I, and serum amyloid A only in HDL. Salivary α-amylase wass identified only in HDL2, and apo L and glycosylated apo A-II only in HDL3. Many of the proteins occurred in a number of isoforms: in all, 47 different isoform identities were demonstrated. A 2-DE mobility shift assay and deglycosylation experiments were used to demonstrate, for the first time, that apo M in LDL and HDL occurs in five isoforms; three that are both N-glycosylated and sialylated, one that is N-glycosylated but not sialylated and one that is neither N-glycosylated nor sialylated. LDL from obese subjects was found to contain more apo J, apo C-II, apo M, α1-antitrypsin and serum amyloid A-IV than LDL from controls,, and also more of an acidic isoform (pI/Mr; 5.2 / 23 100) of apo A-I. In addition, the new LDLassociated protein transthyretin, was found to be significantly more abundant in LDL from obese subjects. On the other hand, the amounts of apo A-IV and the major isoform of apo A-I (pI/Mr; 5.3 / 23 100) were significantly less. Altogether, these findings (i) illustrate the power of 2-DE and mass spectrometry for detailed mapping of the proteins and their isoforms in human lipoproteins; (ii) demonstrate the presence of a number of new proteins in LDL (calgranulin A, lysozyme C and transthyretin); (iii) give precise biochemical clues to the polymorphism of apo M in LDL and HDL, and; (iv) indicate that obesity is associated with significant changes in the protein profile of LDL. It is concluded that new information on lipoproteins can easily be obtained through a proteomic approach, thus facilitating the development of a new proteomic field: lipoproteomics. Much further investigation in this field is warranted, particularly because newly discovered LDL and HDL proteins may play hitherto unknown role(s) in inflammatory reactions of the arterial wall and evolve as useful biomarkers in cardiovascular disease.
|
7 |
A Biomimetic Manganese Model for Artificial Photosynthesis : Q-band Electron Paramagnetic Resonance Study of a Novel Mn2(II,III) ComplexKiflemariam, Jordanos January 2005 (has links)
In natural oxygen-producing photosynthesis solar energy is stored as chemical energy, in carbohydrates, fats and amino acids, using water as electron source. The large transmembrane protein complex, PSII, is the key enzyme in the light-driven reactions. Water oxidation is accomplished by a triad in PSII in which the Mn-cluster plays an important role. In the artificial photosynthetic system, nature’s photosynthesis will be mimicked such that hydrogen, a sustainable energy source, can be produced from solar energy and water alone. Since water oxidiation requires the catalytic activity of a Mn-cluster in photosynthesis, different artificially constructed manganese complexes are investigated. The dinuclear ([Mn2(II,III)L(µ-OAc)2]ClO4), where L is the X-anion of 2-(N,N-Bis(2-methylpyridyl)aminomethyl)-6-(N-(3,5-ditert-butylbenzyl-2-hydroxy)-N-(pyridylmethyl)aminomethyl)-4-methylphenol, an unsymmetric ligand with two coordinating phenolate groups, has been studied. The two Mn-ions are linked via a mono-µ-oxo bridge and two acetate ligands. Q-band Electron Paramagnetic Resonance was conducted on the Unsymmetric Mn2(II,III) Complex. Aquired results show that the complex has a 2600 Gauss broad signal (11 400-14 000 Gauss) with 14-17 lines at g~2 and hyperfines of 120 Gauss. This is consistent with previous X-band studies. Q-band spectra of the Unsymmetric Mn(II,III) display increased hyperfine resolution compared to Qband spectra of the symmetric complex, Mn2(bpmp)(µ-OAC)2. This is noticeable since Unsymmetric Mn2(II,III) and Mn2 (bpmp)(µ-OAC)2 partly overlap in low-frequency experiments (X-band EPR). Further investigations are yet to be expected. Nevertheless, the conducted thesis study provides important knowledge in the futuristic goal of building an artificial super-complex.
|
8 |
Crystallography in Four Dimensions : Methods and ApplicationsCarlsson, Gunilla January 2004 (has links)
<p>The four-electron reduction of dioxygen to water is the most exothermic non-photochemical reaction available to biology. A detailed molecular description of this reaction is needed to understand oxygen-based redox processes. Horseradish peroxidase (HRP) is a haem-containing redox enzyme capable of catalysing the reduction of dioxygen to water. We developed instrumentation and experimental methodology to capture and characterise by X-ray crystallography transient reaction intermediates in this reaction. </p><p>An instrument was designed (“the vapour stream system”) to facilitate reaction initiation, monitoring and intermediate trapping. In combination with single crystal microspectrophotometry, it was used to obtain conditions for capturing a reactive dioxygen complex in HRP. X-ray studies on oxidised intermediates can be difficult for various reasons. Electrons re-distributed in the sample through the photoelectric effect during X-ray exposure can react with high-valency intermediates. In order to control such side reactions during data collection, we developed a new method based on an angle-resolved spreading of the X-ray dose over many identical crystals. Composite data sets built up from small chunks of data represent crystal structures which received different X-ray doses. As the number of electrons liberated in the crystal is dose dependent, this method allows us to observe and drive redox reactions electron-by-electron in the crystal, using X-rays.</p><p>The methods developed here were used to obtain a three-dimensional movie on the X-ray-driven reduction of dioxygen to water in HRP. Separate experiments established high resolution crystal structures for all intermediates, showing such structures with confirmed redox states for the first time. </p><p>Activity of HRP is influenced by small molecule ligands, and we also determined the structures of HRP in complex with formate, acetate and carbon monoxide.</p><p>Other studies established conditions for successfully trapping the M-intermediate in crystals of mutant bacteriorhodopsin, but the poor diffraction quality of these crystals prevented high-resolution structural studies.</p>
|
9 |
Crystallography in Four Dimensions : Methods and ApplicationsCarlsson, Gunilla January 2004 (has links)
The four-electron reduction of dioxygen to water is the most exothermic non-photochemical reaction available to biology. A detailed molecular description of this reaction is needed to understand oxygen-based redox processes. Horseradish peroxidase (HRP) is a haem-containing redox enzyme capable of catalysing the reduction of dioxygen to water. We developed instrumentation and experimental methodology to capture and characterise by X-ray crystallography transient reaction intermediates in this reaction. An instrument was designed (“the vapour stream system”) to facilitate reaction initiation, monitoring and intermediate trapping. In combination with single crystal microspectrophotometry, it was used to obtain conditions for capturing a reactive dioxygen complex in HRP. X-ray studies on oxidised intermediates can be difficult for various reasons. Electrons re-distributed in the sample through the photoelectric effect during X-ray exposure can react with high-valency intermediates. In order to control such side reactions during data collection, we developed a new method based on an angle-resolved spreading of the X-ray dose over many identical crystals. Composite data sets built up from small chunks of data represent crystal structures which received different X-ray doses. As the number of electrons liberated in the crystal is dose dependent, this method allows us to observe and drive redox reactions electron-by-electron in the crystal, using X-rays. The methods developed here were used to obtain a three-dimensional movie on the X-ray-driven reduction of dioxygen to water in HRP. Separate experiments established high resolution crystal structures for all intermediates, showing such structures with confirmed redox states for the first time. Activity of HRP is influenced by small molecule ligands, and we also determined the structures of HRP in complex with formate, acetate and carbon monoxide. Other studies established conditions for successfully trapping the M-intermediate in crystals of mutant bacteriorhodopsin, but the poor diffraction quality of these crystals prevented high-resolution structural studies.
|
10 |
Inflammatory mediators in perinatal infectionsDøllner, Henrik January 2002 (has links)
No description available.
|
Page generated in 0.0431 seconds