1 |
Morse-Smale Complexes : Computation and ApplicationsShivashankar, Nithin January 2014 (has links) (PDF)
In recent decades, scientific data has become available in increasing sizes and
precision. Therefore techniques to analyze and summarize the ever increasing
datasets are of vital importance. A common form of scientific data, resulting from
simulations as well as observational sciences, is in the form of scalar-valued function on domains of interest. The Morse-Smale complex is a topological data-structure
used to analyze and summarize the gradient behavior of such scalar functions.
This thesis deals with efficient parallel algorithms to compute the Morse-Smale
complex as well as its application to datasets arising from cosmological sciences as well as structural biology.
The first part of the thesis discusses the contributions towards efficient computation of the Morse-Smale complex of scalar functions de ned on two and three
dimensional datasets. In two dimensions, parallel computation is made possible
via a paralleizable discrete gradient computation algorithm. This algorithm is
extended to work e ciently in three dimensions also. We also describe e cient
algorithms that synergistically leverage modern GPUs and multi-core CPUs to
traverse the gradient field needed for determining the structure and geometry of
the Morse-Smale complex. We conclude this part with theoretical contributions
pertaining to Morse-Smale complex simplification.
The second part of the thesis explores two applications of the Morse-Smale complex. The first is an application of the 3-dimensional hierarchical Morse-Smale complex to interactively explore the filamentary structure of the cosmic web.
The second is an application of the Morse-Smale complex for analysis of shapes
of molecular surfaces. Here, we employ the Morse-Smale complex to determine
alignments between the surfaces of molecules having similar surface architecture.
|
2 |
Visualisation de champs scalaires guidée par la topologie / Topology-guided Visualization of Scalar DatasetsAllemand Giorgis, Leo 16 June 2016 (has links)
Les points critiques d’une fonction scalaire (minima, points col et maxima) sont des caractéristiques importantes permettant de décrire de gros ensembles de données, comme par exemple les données topographiques. L’acquisition de ces données introduit souvent du bruit sur les valeurs. Un grand nombre de points critiques sont créés par le bruit, il est donc important de supprimer ces points critiques pour faire une bonne analyse de ces données. Le complexe de Morse-Smale est un objet mathématique qui est étudié dans le domaine de la Visualisation Scientifique car il permet de simplifier des fonctions scalaires tout en gardant les points critiques les plus importants de la fonction étudiée, ainsi que les liens entre ces points critiques. Nous proposons dans cette thèse une méthode permettant de construire une fonction qui correspond à un complexe de Morse-Smale d’une fonction définie sur R^2 après suppression de paires de points critiques dans celui-ci.Tout d’abord, nous proposons une méthode qui définit une surface interpolant des valeurs de fonction aux points d’une grille de façon monotone, c’est-à-dire en ne créant pas de point critique. Cette surface est composée d’un ensemble de patchs de Bézier triangulaires cubiques assemblés de telle sorte que la surface soit globalement C^1. Nous donnons des conditionssuffisantes sur les valeurs d fonction et les valeurs de dérivées partielles aux points de la grille afin que la surface soit croissante dans la direction (x+y). Il n’est pas évident de créer des valeurs de dérivées partielles en chaque point de la grille vérifiant ces conditions. C’est pourquoi nous introduisons deux algorithmes : le premier permet de modifier des valeurs de dérivées partielles données en entrée afin que celles-ci vérifient les conditions et le second calcule des valeurs de dérivées partielles à partir des valeurs de fonctions aux points de la grille.Ensuite, nous décrivons une méthode de reconstruction de champs scalaires à partir de complexes de Morse-Smale simplifiés. Pour cela, nous commençons par approximer les 1-cellules (les liens entre les points critiques dans le complexe de Morse-Smale, ceux-ci sont décrits par des polylignes) par des courbes composées de courbes de Bézier cubiques. Nous décrivons ensuite comment notre interpolation monotone de valeurs aux points d’une grille est utilisée pour construire des surfaces monotones interpolant les courbes construites précédemment. De plus, nous montrons que la fonction reconstruite contient tout les points critiques du complexe de Morse-Smale simplifié et n’en contient aucun autre. / Critical points of a scalar function (minima, saddle points and maxima) are important features to characterize large scalar datasets, like topographic data. But the acquisition of such datasets introduces noise in the values. Many critical points are caused by the noise, so there is a need to delete these extra critical points. The Morse-Smale complex is a mathematical object which is studied in the domain of Visualization because it allows to simplify scalar functions while keeping the most important critical points of the studied function and the links between them. We propose in this dissertation a method to construct a function which corresponds to a Morse-Smale complex defined on R^2 after the suppression of pairs of critical points.Firstly, we propose a method which defines a monotone surface (a surface without critical points).This surface interpolates function values at a grid points. Furthermore, it is composed of a set of triangular cubic Bézier patches which define a C^1 continuous surface. We give sufficient conditions on the function values at the grid points and on the partial derivatives at the grid points so that the surface is increasing in the (x+y) direction. It is not easy to compute partial derivatives values which respect these conditions. That’s why we introduce two algorithms : the first modifies the partial derivatives values on input such that they respect the conditions and the second computes these values from the function values at the grid points.Then, we describe a reconstruction method of scalar field from simplified Morse-Smale complexes. We begin by approximating the 1-cells of the complex (which are the links between the critical points, described by polylines) by curves composed of cubic Bézier curves. We then describe how our monotone interpolant of values at grid points is used to construct monotone surfaces which interpolate the curves we computed before. Furthermore, we show that the function we compute contains all the critical points of the simplified Morse-Smale complex and has no others.
|
3 |
Využití spektrální analýzy pro převod trojúhelníkových polygonálních 3D sítí na 3D spline plochy / Using Spectral Analysis for 3D Triangles Polygonal Mesh Conversion on 3D Spline SurfacesŠenk, Miroslav January 2007 (has links)
In this work we deal with conversion of 3D triagonal polygonal meshes to the 3D spline patches using spectral analysis. The converted mesh is divided into quadrilaterals using eigenvectors of Laplacian operator. These quadrilaterals will be converted into spline patches. We will present some interesting results of this method. The assets and imperfections of this method will be briefly discussed.
|
Page generated in 0.0526 seconds