Spelling suggestions: "subject:"multiinput multioutput (MIMO)"" "subject:"multiinput multipleoutput (MIMO)""
1 |
Precoder Design for Cooperative Cognitive Radio SystemsBudhathoki, Krishna Ram 21 May 2013 (has links)
No description available.
|
2 |
Nussbaum gain based iterative learning control for a class of multi-input multi-output nonlinear systems.Jiang, Ping, Chen, H. January 2005 (has links)
Yes / An adaptive iterative learning control(ILC)
approach is proposed for a class of multi-input multi-output
(MIMO) uncertain nonlinear systems without prior knowledge
about system control gain matrices. The Nussbaum-type gain
and the positive definite discrete matrix kernel are proposed for
dealing with selection of the unknown control gain and learning
of the repeatable uncertainties, respectively. Asymptotic
convergence for a trajectory tracking within a finite time
interval is achieved through repetitive tracking. Simulations are
carried out to show the validity of the proposed control method.
|
3 |
<b>SCALABLE MULTI INPUT MULTI OUTPUT DC BUCK CONVERTER USING MULTISTAGE AND MULTIPHASE TECHNIQUES</b>Khalifa Ahmed Alremeithi (14661221) 18 July 2024 (has links)
<p dir="ltr">The demand for renewable energy and electric vehicles (EVs) is increasing, necessitating efficient energy conversion and management solutions. The thesis addresses the critical challenge of dynamically converting multiple Direct Current (DC) inputs to multiple DC outputs while maintaining efficiency and scalability. The primary objective is to design and test a Multi Input Multi Output (MIMO) DC converter, focusing on verifying its scalability and load efficiency. The research investigates hardware requirements, the implementation of multiphase circuits, and the balancing of power between various inputs through multistage cycling. The study hypothesizes that multistage cycling balances the output power between inputs, and multiphase configurations can scale the converter without affecting efficiency. Methods include examining existing converters, simulating multistage circuits, and fabricating a prototype. Key deliverables include a working prototype demonstrating scalability and efficiency. Results indicate that the MIMO DC converter performs efficiently with multiple inputs and outputs, achieving over 90% efficiency. The use of Gallium Nitride (GaN) transistors and synchronous buck converter topology proves effective in minimizing losses and enhancing stability. The research holds significant value in advancing renewable energy and DC converter technology, promoting sustainability and efficient energy management. Future work should explore advanced filtration circuits, higher voltage testing, and more complex configurations to further enhance the converter's capabilities.</p>
|
4 |
Advanced controllers for building energy management systems : advanced controllers based on traditional mathematical methods (MIMO P+I, state-space, adaptive solutions with constraints) and intelligent solutions (fuzzy logic and genetic algorithms) are investigated for humidifying, ventilating and air-conditioning applicationsGhazali, Abu Baker Mhd January 1996 (has links)
This thesis presents the design and implementation of control strategies for building energy management systems (BEMS). The controllers considered include the multi PI-loop controllers, state-space designs, constrained input and output MIMO adaptive controllers, fuzzy logic solutions and genetic algorithm techniques. The control performances of the designs developed using the various methods based on aspects such as regulation errors squared, energy consumptions and the settling periods are investigated for different designs. The aim of the control strategy is to regulate the room temperature and the humidity to required comfort levels. In this study the building system under study is a 3 input/ 2 output system subject to external disturbances/effects. The three inputs are heating, cooling and humidification, and the 2 outputs are room air temperature and relative humidity. The external disturbances consist of climatic effects and other stochastic influences. The study is carried out within a simulation environment using the mathematical model of the test room at Loughborough University and the designed control solutions are verified through experimental trials using the full-scale BMS facility at the University of Bradford.
|
5 |
Investigation of the application of UPFC controllers for weak bus systems subjected to fault conditions : an investigation of the behaviour of a UPFC controller : the voltage stability and power transfer capability of the network and the effect of the position of unsymmetrical fault conditionsJalboub, Mohamed January 2012 (has links)
In order to identify the weakest bus in a power system so that the Unified Power Flow Controller could be connected, an investigation of static and dynamic voltage stability is presented. Two stability indices, static and dynamic, have been proposed in the thesis. Multi-Input Multi-Output (MIMO) analysis has been used for the dynamic stability analysis. Results based on the Western System Coordinate Council (WSCC) 3-machine, 9-bus test system and IEEE 14 bus Reliability Test System (RTS) shows that these indices detect with the degree of accuracy the weakest bus, the weakest line and the voltage stability margin in the test system before suffering from voltage collapse. Recently, Flexible Alternating Current Transmission systems (FACTs) have become significant due to the need to strengthen existing power systems. The UPFC has been identified in literature as the most comprehensive and complex FACTs equipment that has emerged for the control and optimization of power flow in AC transmission systems. Significant research has been done on the UPFC. However, the extent of UPFC capability, connected to the weakest bus in maintaining the power flows under fault conditions, not only in the line where it is installed, but also in adjacent parallel lines, remains to be studied. In the literature, it has normally been assumed the UPFC is disconnected during a fault period. In this investigation it has been shown that fault conditions can affect the UPFC significantly, even if it occurred on far buses of the power system. This forms the main contribution presented in this thesis. The impact of UPFC in minimizing the disturbances in voltages, currents and power flows under fault conditions are investigated. The WSCC 3-machine, 9-bus test system is used to investigate the effect of an unsymmetrical fault type and position on the operation of UPFC controller in accordance to the G59 protection, stability and regulation. Results show that it is necessary to disconnect the UPFC controller from the power system during unsymmetrical fault conditions.
|
6 |
Downlink Transmission Techniques For Multi User Multi Input Multi Output Wireless CommunicationsCoskun, Adem 01 August 2007 (has links) (PDF)
Multi-user MIMO (MIMO-MU) communication techniques make use of available channel state information at the transmitter to mitigate the inter-user interference. The goal of these techniques is to provide the least interference at the mobile stations by applying a precoding operation. In this thesis a comparison of available techniques in the literature such as Channel Decomposition, SINR Balancing, Joint-MMSE optimization is presented. Novel techniques for the MIMO multi-user downlink communication systems, where a single stream is transmitted to each user are proposed. The proposed methods, different from the other methods in the literature, use a simple receiver to combat the interference. It has been shown that MRC based receivers are as good as more complicated joint MMSE receivers.
|
7 |
Advanced controllers for building energy management systems. Advanced controllers based on traditional mathematical methods (MIMO P+I, state-space, adaptive solutions with constraints) and intelligent solutions (fuzzy logic and genetic algorithms) are investigated for humidifying, ventilating and air-conditioning applications.Ghazali, Abu Baker MHD. January 1996 (has links)
This thesis presents the design and implementation of control strategies for building
energy management systems (BEMS). The controllers considered include the multi PI-loop controllers, state-space designs, constrained input and output MIMO adaptive
controllers, fuzzy logic solutions and genetic algorithm techniques. The control
performances of the designs developed using the various methods based on aspects such
as regulation errors squared, energy consumptions and the settling periods are
investigated for different designs. The aim of the control strategy is to regulate the room
temperature and the humidity to required comfort levels.
In this study the building system under study is a 3 input/ 2 output system subject to external disturbances/effects. The three inputs are heating, cooling and humidification,
and the 2 outputs are room air temperature and relative humidity. The external
disturbances consist of climatic effects and other stochastic influences. The study is
carried out within a simulation environment using the mathematical model of the test
room at Loughborough University and the designed control solutions are verified
through experimental trials using the full-scale BMS facility at the University of
Bradford.
|
8 |
Investigation of the application of UPFC controllers for weak bus systems subjected to fault conditions. An investigation of the behaviour of a UPFC controller: the voltage stability and power transfer capability of the network and the effect of the position of unsymmetrical fault conditions.Jalboub, Mohamed K. January 2012 (has links)
In order to identify the weakest bus in a power system so that the Unified Power Flow Controller could be connected, an investigation of static and dynamic voltage stability is presented. Two stability indices, static and dynamic, have been proposed in the thesis. Multi-Input Multi-Output (MIMO) analysis has been used for the dynamic stability analysis. Results based on the Western System Coordinate Council (WSCC) 3-machine, 9-bus test system and IEEE 14 bus Reliability Test System (RTS) shows that these indices detect with the degree of accuracy the weakest bus, the weakest line and the voltage stability margin in the test system before suffering from voltage collapse.
Recently, Flexible Alternating Current Transmission systems (FACTs) have become significant due to the need to strengthen existing power systems. The UPFC has been identified in literature as the most comprehensive and complex FACTs equipment that has emerged for the control and optimization of power flow in AC transmission systems. Significant research has been done on the UPFC. However, the extent of UPFC capability, connected to the weakest bus in maintaining the power flows under fault conditions, not only in the line where it is installed, but also in adjacent parallel lines, remains to be studied. In the literature, it has normally been assumed the UPFC is disconnected during a fault period. In this investigation it has been shown that fault conditions can affect the UPFC significantly, even if it occurred on far buses of the power system. This forms the main contribution presented in this thesis. The impact of UPFC in minimizing the disturbances in voltages, currents and power flows under fault conditions are investigated. The WSCC 3-machine, 9-bus test system is used to investigate the effect of an unsymmetrical fault type and position on the operation of UPFC controller in accordance to the G59 protection, stability and regulation. Results show that it is necessary to disconnect the UPFC controller from the power system during unsymmetrical fault conditions. / Libyan Government
|
Page generated in 0.0524 seconds