• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical Methods for Model Reduction of Time-Varying Descriptor Systems

Hossain, Mohammad Sahadet 20 September 2011 (has links) (PDF)
This dissertation concerns the model reduction of linear periodic descriptor systems both in continuous and discrete-time case. In this dissertation, mainly the projection based approaches are considered for model order reduction of linear periodic time varying descriptor systems. Krylov based projection method is used for large continuous-time periodic descriptor systems and balancing based projection technique is applied to large sparse discrete-time periodic descriptor systems to generate the reduce systems. For very large dimensional state space systems, both the techniques produce large dimensional solutions. Hence, a recycling technique is used in Krylov based projection methods which helps to compute low rank solutions of the state space systems and also accelerate the computational convergence. The outline of the proposed model order reduction procedure is given with more details. The accuracy and suitability of the proposed method is demonstrated through different examples of different orders. Model reduction techniques based on balance truncation require to solve matrix equations. For periodic time-varying descriptor systems, these matrix equations are projected generalized periodic Lyapunov equations and the solutions are also time-varying. The cyclic lifted representation of the periodic time-varying descriptor systems is considered in this dissertation and the resulting lifted projected Lyapunov equations are solved to achieve the periodic reachability and observability Gramians of the original periodic systems. The main advantage of this solution technique is that the cyclic structures of projected Lyapunov equations can handle the time-varying dimensions as well as the singularity of the period matrix pairs very easily. One can also exploit the theory of time-invariant systems for the control of periodic ones, provided that the results achieved can be easily re-interpreted in the periodic framework. Since the dimension of cyclic lifted system becomes very high for large dimensional periodic systems, one needs to solve the very large scale periodic Lyapunov equations which also generate very large dimensional solutions. Hence iterative techniques, which are the generalization and modification of alternating directions implicit (ADI) method and generalized Smith method, are implemented to obtain low rank Cholesky factors of the solutions of the periodic Lyapunov equations. Also the application of the solvers in balancing-based model reduction of discrete-time periodic descriptor systems is discussed. Numerical results are given to illustrate the effciency and accuracy of the proposed methods.
2

Numerical Methods for Model Reduction of Time-Varying Descriptor Systems

Hossain, Mohammad Sahadet 07 September 2011 (has links)
This dissertation concerns the model reduction of linear periodic descriptor systems both in continuous and discrete-time case. In this dissertation, mainly the projection based approaches are considered for model order reduction of linear periodic time varying descriptor systems. Krylov based projection method is used for large continuous-time periodic descriptor systems and balancing based projection technique is applied to large sparse discrete-time periodic descriptor systems to generate the reduce systems. For very large dimensional state space systems, both the techniques produce large dimensional solutions. Hence, a recycling technique is used in Krylov based projection methods which helps to compute low rank solutions of the state space systems and also accelerate the computational convergence. The outline of the proposed model order reduction procedure is given with more details. The accuracy and suitability of the proposed method is demonstrated through different examples of different orders. Model reduction techniques based on balance truncation require to solve matrix equations. For periodic time-varying descriptor systems, these matrix equations are projected generalized periodic Lyapunov equations and the solutions are also time-varying. The cyclic lifted representation of the periodic time-varying descriptor systems is considered in this dissertation and the resulting lifted projected Lyapunov equations are solved to achieve the periodic reachability and observability Gramians of the original periodic systems. The main advantage of this solution technique is that the cyclic structures of projected Lyapunov equations can handle the time-varying dimensions as well as the singularity of the period matrix pairs very easily. One can also exploit the theory of time-invariant systems for the control of periodic ones, provided that the results achieved can be easily re-interpreted in the periodic framework. Since the dimension of cyclic lifted system becomes very high for large dimensional periodic systems, one needs to solve the very large scale periodic Lyapunov equations which also generate very large dimensional solutions. Hence iterative techniques, which are the generalization and modification of alternating directions implicit (ADI) method and generalized Smith method, are implemented to obtain low rank Cholesky factors of the solutions of the periodic Lyapunov equations. Also the application of the solvers in balancing-based model reduction of discrete-time periodic descriptor systems is discussed. Numerical results are given to illustrate the effciency and accuracy of the proposed methods.

Page generated in 0.0678 seconds