• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • Tagged with
  • 19
  • 19
  • 19
  • 10
  • 8
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on LiYRF

Chen, Karen January 2010 (has links)
Thesis advisor: Michael Graf / Senior thesis on muon spin relaxation study of LiHoXY1-XF4 and semi-adiabatic specific heat experiment on LiTb0.40Y0.60F4 / Thesis (BS) — Boston College, 2010. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Physics Honors Program. / Discipline: Physics.
2

Magnetic Order in the Pyrochlore Iridates

Disseler, Steven Michael Thomas January 2013 (has links)
Thesis advisor: Michael J. Graf / This thesis is concerned with experimentally determining the magnetic and electronic states in a unique class of transition metal oxides known as the pyrochlore iridates, A₂Ir₂O₇ (A = Y or Rare earth). The extended nature of the 5d Ir orbitals in the iridates places these materials in a regime of intermediate electron correlation and large spin-orbit interaction such that this system may host several novel or topological states of matter which may be perturbed by incorporating different A-species. Additionally, the pyrochlore structure is geometrically frustrated and has been long been studied as a potential host of a number of exotic magnetic phenomenon. However, even after years of intense theoretical and experimental interest many fundamental questions still remain about the nature of the magnetic ground sates in this series which are of vital importance in understanding the roles of various interactions and potential of such novel phenomenon. The primary aim of this thesis is therefore to determine how magnetic order develops on the Ir sublattice in this series, particularly how it is perturbed through variation of the crystalline structure, magnetism of the A-site ions, and presence of mobile charges. This thesis is the first comprehensive experimental study of these effects which has utilized several complementary experimental probes of both bulk and local magnetism in a number of compounds. The techniques presented in this work include magnetotransport, bulk magnetization, elastic neutron scattering, and muon spin relaxation (µSR) measurements. All of the three compounds studied in this work (A = Y, Yb, and Nd) are shown to definitively exhibit long-range magnetic order on the Ir sublattice, which has previously only been inferred based on studies of other compounds. The compounds Y₂Ir₂O₇ and Yb₂Ir₂O₇ are correlated insulators at low temperature and are found to have identical configuration of the Ir moments, despite the presence of the large localized Yb³⁺. Numerical investigations presented here have provided the first conclusive evidence that this order is of the `all-in/all-out' type, consistent with recent resonant x-ray studies; additionally, we have shown that this order exists for all insulating compounds regardless of structural parameters or properties of the A-ion. On the other hand, Nd₂Ir₂O₇ is weakly metallic with Kondo-like behavior at low temperature, with long-range order only on the Ir site, in disagreement with previous results from neutron scattering. Measurements of the field dependent magnetization and Hall effect reveal a large anomalous Hall component, suggesting that the Nd<super>3+</super> may exhibit a spin-ice state with very short correlation length, while the Ir sublattice is likely in the `all-in/all-out' state. From this, it is determined that Nd₂Ir₂O₇ lies at an important cross-over point in the series in which correlation energy and conduction bandwidth yield chiral order with features akin to both the metallic unordered Pr₂Ir₂O₇ and those of the magnetically ordered insulators. These results are discussed with regard to recent theoretical models exploring the role of electron correlation, frustration and various exchange interactions in these materials. / Thesis (PhD) — Boston College, 2013. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
3

Muon studies of low-dimensional solid state systems

Jestadt, Thomas January 1999 (has links)
No description available.
4

Synthesis and study of frustrated oxide and mixed anion materials

Clark, Lucy January 2013 (has links)
Mixed anion systems, such as oxynitrides and oxyfluorides, are an emerging class of interesting materials. The lower stability of mixed anion systems in comparison to oxide materials has had the consequence that this area of materials research is relatively less well explored. However, the development of new synthesis techniques has resulted in the preparation of many new mixed anion systems and so a detailed understanding of their structure and how this relates to their electronic and magnetic properties is necessary. Within this Thesis, several oxide, oxynitride and oxyfluoride systems are investigated with a particular focus on the magnetic behaviour of materials based on geometrically frustrated pyrochlore and kagome lattices. The Lu2Mo2O7 pyrochlore contains a geometrically frustrated network of vertex sharing Mo4+ (d2 S = 1) tetrahedra. Here, the solid state synthesis of Lu2Mo2O7−x is reported along with a discussion of the coexistence of two cubic pyrochlore phases that has been discovered in samples synthesised at 1600 ◦C. Powder neutron diffraction and thermogravimetric analysis have revealed that this two-phase behaviour originates from a miscibility gap between stoichiometric Lu2Mo2O7 and oxygen deficient Lu2Mo2O6.6. Magnetic susceptibility and muon spin relaxation measurements support the formation of a geometrically frustrated spin glass ground state in Lu2Mo2O7 with a spin freezing temperature Tf ∼ 16 K. Low temperature neutron diffraction has confirmed the absence of long range magnetic order and magnetic diffuse neutron scattering data have indicated the presence of competing nearest and next nearest neighbour antiferromagnetic exchange interactions in the spin glass state. The magnetic heat capacity of Lu2Mo2O7 follows a T2-dependence at the low temperatures, indicating that Lu2Mo2O7 is another rare example of an unconventional, topological spin glass, which is stable in the absence of significant chemical disorder. The magnetic properties of the oxygen deficient pyrochlore phase Lu2Mo2O6.6 are qualitatively similar to those of Lu2Mo2O7, but an increase in the spin freezing temperature Tf ∼ 20 K suggests that oxygen-vacancy disorder in Lu2Mo2O6.6 favours the onset of a glassy state at higher temperatures and enhances the degree of frustration. Oxynitride pyrochlores with the ideal composition R2Mo2O5N2 (R = rare earth) contain Mo5+ d1 S = 1 2 cations on the frustrated pyrochlore lattice and are thus ideal candidates to support exotic magnetic ground states. Here, the synthesis of oxynitride pyrochlores of the Lu2Mo2O7 system by thermal ammonolysis is discussed alongside powder neutron diffraction and susceptibility data that show no evidence for long range magnetic order and an absence of spin freezing down to at least 2 K despite the persistence of strong antiferromagnetic exchange (θ = −120 K). A comparison of the magnetic diffuse neutron scattering between the spin glass state of Lu2Mo2O7 and the oxynitride is given, which suggests that the majority of the magnetic scattering in the oxynitride system is inelastic. In addition, low temperature magnetic heat capacity shows an absence of magnetic phase transitions and a continuous density of states through a T-linear dependence down to 500 mK. [NH4]2[C7H14N][V7O6F18], diammonium quinuclidinium vanadium(III,IV) oxyfluoride or DQVOF, is a kagome bilayer system with a geometrically frustrated two-dimensional kagome network of V4+ d1 S = 1 2 cations and V3+ d2 S = 1 cations between the kagome layers. Here, low temperature magnetisation and heat capacity data are presented, which demonstrate that the interplane V3+ d2 cations are well decoupled from the kagome layers at low temperatures such that DQVOF is a good experimental realisation of a S = 1 2 kagome antiferromagnet. Despite significant antiferromagnetic exchange (θ = −60 K) within the kagome planes, muon spin relaxation data have confirmed the absence of spin freezing and the persistence of internal field fluctuations that are intrinsic to the kagome layers down to temperatures of 40 mK. The low temperature heat capacity of the V4+ kagome network follows T-linear behaviour down to the 300 mK, highlighting the absence of a spin gap in the low energy excitation spectrum of DQVOF. The low temperature magnetic study of DQVOF presented here thus strongly supports the formation of a gapless quantum spin liquid phase. In the final results chapter, a discussion of the anion ordering principles in oxynitride systems is given. A high temperature, high resolution neutron diffraction study of the oxynitride perovskite SrTaO2N has revealed that the partial anion order that results in segregated Ta-N zig-zag chains is stable up to 1100 ◦C. Furthermore, these anion ordering principles are extended to the d1 perovskite oxynitrides RVO2−xN1+x (R = La, Nd, Pr) in a variable temperature neutron diffraction study, which confirms that the anion chain ordering discovered in d0 SrTaO2N is robust to electron doping. The R = La analogue also provides an interesting example of a rhombohedral oxynitride perovskite phase which coexists with an orthorhombic phase over the 4−300 K temperature range of the neutron diffraction study.
5

Muon-spin relaxation and its application in the study of molecular quantum magnets

Möller, Johannes S. January 2013 (has links)
This thesis is concerned with the muon-spin relaxation (musr) technique and its application in the study of a number of molecular magnetic systems that may be driven through a quantum phase transition at low temperatures through the application of a magnetic field or hydrostatic pressure. Musr is a highly sensitive probe of magnetism, but its utility can be severely limited by the lack of knowledge of the muon implantation site and the extent to which the muon perturbs its host. In a system of ionic fluorides, where partial information about the muon site is experimentally available, I demonstrate systematically that these problems can be addressed accurately using electronic-structure calculations. The F--$mu$--F complex formed by muons in many fluorides can be understood as an exotic molecule-in-a-crystal defect with a zero-point energy larger than that of any naturally-occurring triatomic molecule. I demonstrate the interesting possibility of controlling the magnetic dimensionality in a molecular magnet using applied pressure. musr and high-field magnetisation experiments under applied pressure on the coordination polymer CuF$_2$(H$_2$O)$_2$(pyrazine) show a transition from a quasi-two-dimensional to a quasi-one-dimensional antiferromagnetic phase. Density-functional theory calculations and calculations of the dipolar anisotropy complement the experiments. I describe how subtle differences in chemical composition can lead to starkly different structural and magnetic properties. [Cu(pyz)(H$_2$O)(gly)$_2$](ClO$_4$)$_2$ may be considered an antiferromagnetic chain that orders below 50 mK while the related compound [Cu(pyz)(gly)](ClO$_4$) is formed from Cu$^{2+}$ dimers and remains disordered down to 30 mK in zero field, but displays a field-temperature phase diagram consistent with the Bose-Einstein condensation of triplons. I also describe musr measurements on the strong-leg spin ladder DIMPY and on the molecular nanomagnets Cr$_8$Cd and Cr$_8$Mn which highlight some of the remaining challenges for longitudinal-field musr experiments.
6

Dy2ScNbO7: a study of the effect of a disordered B-site on the spin ice magnetism typically seen in dysprosium pyrochlores / Dy2ScNbO7: the magnetism of a mixed B-site pyrochlore

Rutherford, Megan R. January 2021 (has links)
The thermodynamics of disorder have been studied for hundreds of years, with physicists using entropy to quantitatively connect the macroscopic properties of a system to its microscopic multiplicity (disorder). Here, we consider the effect of disorder in magnetic materials. The pyrochlore oxides (A2B2O7), comprised of a bipartite lattice of corner-sharing tetrahedra, have been central to the study of geometric frustration for the past several decades. Pyrochlores, in which the A-site is occupied by the magnetic cation dysprosium, tend to exhibit spin ice ordering down to low temperatures, in spite of chemical perturbations to the B-site lattice. With the motivation of this study being the investigation of how adding B-site disorder to the traditional Dy2ScNbO7 form of Dy-pyrochlores, a stoichiometric mixture of Sc-3+ and Nb-5+ was used to synthesize Dy2ScNbO7, the pyrochlore material that is central to this thesis work. We show using magnetometry, heat capacity, muon spin relaxation, and inelastic neutron scattering that the mixed B-site pyrochlore Dy2ScNbO7, does not adopt the spin ice ground state. The low temperature spin dynamics are much faster than other analogous dysprosium pyrochlores, the residual entropy is significantly smaller than that predicted for a spin ice and there are low-lying crystal field excitations. These results all indicate that the B-site disorder appears to destroy the predicted Ising anisotropy of dysprosium. / Thesis / Master of Science (MSc)
7

The Effect of Chemical Pressure on the Magnetic Ground States of Rare Earth Pyrochlores / Application of Chemical Pressure to Rare Earth Pyrochlores

Hallas, Alannah M. 11 1900 (has links)
The rare earth pyrochlore oxides, with formula R2B2O7, are a chemically versatile family of materials that exhibit a diverse array of magnetic phenomena. In this structure the R and B site cations each form a corner-sharing tetrahedral network, a motif that is prone to intense geometric magnetic frustration. As a consequence of their magnetic frustration, rare earth pyrochlores are observed to host a number of remarkable states such as spin ice and spin liquid states. In this thesis we endeavor to explore the phase diagrams of the rare earth pyrochlores through the lens of chemical pressure. Chemical pressure is applied by varying the ionic radius of the non-magnetic B site cation, which either expands or contracts the lattice, in analogy to externally applied pressure. We apply positive chemical pressure by substituting germanium at the B site and negative chemical pressure by substituting lead at the B site. We also consider the effect of platinum substitution, which has nominally negligible chemical pressure effects. In the ytterbium pyrochlores, we find that positive chemical pressure tunes the magnetic ground state from ferromagnetic to antiferromagnetic. Remarkably, we also find that the ytterbium pyrochlores share a ubiquitous form to their low temperature spin dynamics despite their disparate ordered states. In the terbium pyrochlores, we find that positive chemical pressure promotes ferromagnetic correlations - the opposite effect of externally applied pressure. Our studies of platinum pyrochlores reveal that platinum, while non-magnetic, is able to facilitate superexchange pathways. Thus, the magnetic ground states of the platinum pyrochlores are significantly altered from their titanate analogs. The work in this thesis highlights the delicate balance of interactions inherent to rare earth pyrochlore magnetism and shows that chemical pressure is a powerful tool for navigating their phase spaces. / Thesis / Doctor of Philosophy (PhD) / Rare earth pyrochlores have the chemical formula R2B2O7, where R is a magnetic rare earth element and B is a non-magnetic element. Materials of this type are widely studied because they have a propensity to exhibit exotic magnetic properties. In this thesis, we study the effect of varying the size of the non-magnetic B site atom, which is termed chemical pressure. As B is made larger or smaller, the crystal lattice expands or contracts, mimicking the effect of externally applied pressure. High-pressure synthesis techniques were used to prepare R2B2O7 compounds with B site cations that are typically too small (germanium), too large (lead), or too unstable (platinum) under ambient pressure conditions. Our characterizations of these high-pressure materials have revealed that their magnetism is remarkably sensitive to the application of chemical pressure.
8

Three molecular materials studied by positive muons and magnetometry

Lovett, Brendon January 2000 (has links)
No description available.
9

Propriétés magnétiques de nanoparticules et de matériaux à transitions de spin/Magnetic properties of nanoparticles and spin transition materials

Rebbouh, Leïla 26 February 2007 (has links)
Lobtention dun bon contraste en imagerie médicale est un pré-requis à un examen de qualité. Limagerie médicale basée sur la résonance nucléaire magnétique utilise diverses substances magnétiques comme agent de contraste. Le développement dagents de contraste à la fois plus performants et plus économiques sappuie fortement sur létude fondamentale des propriétés magnétiques de divers matériaux potentiellement utilisables. Dans ce travail, deux voies ont été poursuivies. La première partie est consacrée à des matériaux à transition de spin, qui pourraient être utilisés comme agents de contraste en résonance magnétique, pour autant que leur température de transition soit voisine de celle du corps humain. En effet, ces matériaux ont la particularité de posséder deux états magnétiques différents et, sous linfluence dune perturbation telle que la pression ou la température, peuvent passer dun état à lautre, à savoir létat paramagnétique ou diamagnétique. Les complexes de fer(II) étudiés sont basés sur des ligands tri-pyrazolyl borate et méthane. Une autre voie suivie pour améliorer le diagnostic médical est le développement et lutilisation de nanoparticules magnétiques fonctionnelles pour la détection et/ou le traitement des cellules cancéreuses. Dans la deuxième partie de ce travail, les propriétés magnétiques de nanoparticules ferriques préparées par deux méthodes différentes sont investiguées. La spectroscopie Mössbauer est largement utilisée dans cette thèse et les résultats obtenus par cette technique constituent la contribution principale de lauteur au travail. Cette technique, basée sur la fluorescence résonnante sans recul des rayons gamma, permet létude des interactions hyperfines de matériaux solides contenant du fer. Appliquée aux matériaux à transition de spin et aux nanoparticules, deux champs dapplication bien distincts, la spectroscopie Mössbauer fournit des informations structurelles et magnétiques. Elle complémente admirablement dautres techniques macroscopiques et microscopiques, comme la magnétométrie, la microscopie électronique et la diffraction des rayons X. Les autres techniques qui ont été utilisées par lauteur sont la magnétométrie et la relaxation des muons. Cest la première fois, que cette dernière technique est introduite dans léventail des techniques exploitées à lUniversité de Liège.
10

Electronic & Magnetic Properties of Ba(Fe,Co)2As2 & URu2Si2

Williams, Travis J. 04 1900 (has links)
<p>This thesis details a collection of experiments performed on two condensed matter systems, Co-doped BaFe<sub>2</sub>As<sub>2</sub> and URu<sub>2</sub>Si<sub>2</sub>. These two materials are related by their structural type (<em>ThCr<sub>2</sub>Si<sub>2</sub></em>-type) serving as great examples of the diversity of material properties present in this family. They are also both superconducting materials and belong to the collection of strongly-correlated electron systems. The interest in studying the Ba(Fe,Co)<sub>2</sub>As<sub>2</sub> group of materials is due to the high superconducting transition temperature in these (and related) materials, while the compound URu<sub>2</sub>Si<sub>2</sub> was studied due to the presence of a poorly-understood 'hidden order' phase.</p> <p>Muon spin relaxation/rotation/resonance (µSR) was used to measure several single crystals of the series Ba(Fe<sub>2-<em>x</em></sub>Co<em><sub>x</sub></em>)<sub>2</sub>As<sub>2</sub> with Cobalt concentrations <em>x </em>= 0.038, 0.047, 0.061, 0.074, 0.107 and 0.114, and a single crystal of Sr(Fe<sub>0.87</sub>Co<sub>0.13</sub>)<sub>2</sub>As<sub>2</sub>. The two samples with the lowest doping, <em>x </em>= 0.038 and <em>x </em>= 0.047, showed strong c-axis magnetism occurring below the magnetic transition, T<sub>SDW</sub>. The measurements suggest that the local magnetic field is increasingly disordered as the concentration of Co increases. These samples were shown to exhibit both superconductivity and magnetism, but that the entire sample contains non-zero local magnetic fields, meaning that superconductivity exists in or near regions of strong magnetic order.</p> <p>The remaining compounds (with <em>x </em>= 0.061, 0.074, 0.107, 0.114 and Sr(Fe<sub>0.87</sub>Co<sub>0.13</sub>)<sub>2</sub>As<sub>2</sub>) were measured with zero-field (ZF)-µSR and no magnetic ordering was found down to T = 1.65 K. An analytic Ginzburg-Landau model was used to fit the data and obtain absolute values for the penetration depth, λ. A model for the temperature dependence of the density of superconducting carriers, n<sub>s</sub> ≈ λ<sup>2</sup>, based on two <em>s</em>-wave gaps describes the data well. Below T<sub>SC</sub>, a paramagnetic frequency shift was observed indicative of field-induced magnetism along the c crystallographic direction.</p> <p>Measurements of URu<sub>2</sub>Si<sub>2</sub> under chemical and hydrostatic pressure have focused on measuring the spin correlations that are present in the hidden order phase. The chemical pressure that is induced by 5% Re doping perturbs, but does not destroy, the commensurate spin excitations. The spin gap that is present in the parent material is also present under this chemical doping. The hidden order phase survives at least halfway to the quantum critical point to ferromagnetism, but is weakened by the Re substitution.</p> <p>Under hydrostatic pressure of 10.1 kbar, URu<sub>2</sub>Si<sub>2</sub> becomes antiferromagnetic, but the spin correlations are found to be qualitatively similar to those of the hidden order phase. The width in reciprocal space (Q-width) of the excitations and their gapped nature remains unchanged upon entering the antiferromagnetic phase. Quantitatively, there is an increase in the magnitude of the gap at Q = (1.4 0 0). This may be a result of the increase in the transition temperature preceding the entry to the antiferromagnetic phase.</p> <p>Due to the large difference in their properties, and hence the motivation for studying Ba(Fe<sub>1-<em>x</em></sub>Co<em><sub>x</sub></em>)<sub>2</sub>As<sub>2</sub> and URu<sub>2</sub>Si<sub>2</sub>, they will be introduced and presented separately. Chapter 1 will provide the necessary background material on Ba(Fe,Co)<sub>2</sub>As<sub>2</sub>, while Chapter 2 will provide the background for the work on URu<sub>2</sub>Si<sub>2</sub>. Chapter 3 will describe the experimental techniques that were used to study these systems.</p> <p>Original research results on Ba(Fe,Co)<sub>2</sub>As<sub>2</sub> are presented in Chapter 4. This is mainly focused on µSR measurements of dopings that display superconductivity. Samples that did not order magnetically were measured in the mixed state to measure the vortex lattice to extract the various properties, including the superconducting pairing symmetry. Samples that did order magnetically were measured to analyze the amount of magnetic disorder and discover the extent of coexistence or phase separation between magnetism and superconductivity.</p> <p>Chapter 5 details the original research results on URu<sub>2</sub>Si<sub>2</sub>. This involved crystal growth of these compounds, and two neutron scattering experiments to measure the spin correlations while perturbing the hidden order state. The first experiment was done on a Re-doped crystal, URu<sub>1.9</sub>Re<sub>0.1</sub>Si<sub>2</sub>. Doping with Re suppresses the hidden order, eventually leading to ferromagnetism at higher dopings. This work showed that the spin correlations are also suppressed, but not as quickly as the hidden order. The second experiment was on pure URu<sub>2</sub>Si<sub>2</sub> under hydrostatic pressure. Applied pressure increases the hidden order transition, but eventually leads to antiferromagnetism, the phase in which the experiment was performed.</p> / Doctor of Philosophy (PhD)

Page generated in 0.3444 seconds