241 |
Composites conducteurs polymères hautement déformables pour la récupération d’énergie houlomotrice / Conductive and highly stretchable polymer composites for wave energy harvestingIglesias, Sophie 23 April 2018 (has links)
Ces travaux de thèse ont porté sur l’élaboration d’électrodes déformables pour la récupération d’énergie houlomotrice. En effet, la conversion de l’énergie mécanique des vagues en électricité est possible via un système entièrement souple et basé sur la technologie des polymères électroactifs (ou EAP). Ces matériaux ont la capacité de se déformer sous stimuli électrique, d’où la nécessité de développer des matériaux conducteurs déformables. Le matériau EAP choisi pour l’étude est un élastomère silicone. La formulation de composites à matrice élastomère silicone chargée en particules conductrices carbonées (graphite, nanofeuillets de graphite et nanotubes de carbone) est ainsi la piste suivie pour composer des électrodes déformables. Deux méthodes de mélange, en voie fondu, ont été explorées. La première utilise un mélangeur planétaire, et la seconde utilise en plus un mélangeur tri-cylindre. L’influence sur les propriétés électriques des composites, de la méthode de mélange, de la nature de la charge conductrice ainsi du taux de charges, a été analysée. Aussi, l’étude de la percolation électrique ainsi que l’étude des mécanismes de conduction mis en jeux dans les différents composites ont été réalisées, et complétées par l’observation de la morphologie en microscopie optique et en microscopie électronique. Le comportement mécanique des composites en traction a également été analysé. Enfin, les propriétés couplées électro-mécaniques des composites les plus prometteurs ont été testées. Les mesures permettent de proposer une formulation à base de nanotubes de carbone comme électrode déformable. / This PhD work presents the development of stretchable electrodes for wave energy harvesting. Indeed, it is possible to convert the mechanical energy of the waves into electricity thanks to a flexible system based on electroactive polymer (EAP) technology. As EAPs have the ability to deform under electrical stimuli, deformable conductive materials are needed. In this study, the chosen EAP is a silicone elastomer. Composites formulated with silicone elastomer matrix filled with carbonaceous conductive particles (graphite, graphite nanoplatelets and carbon nanotubes) were thus developed. Two mixing methods, by melt compounding, have been explored. The first uses a planetary mixer, and the second uses a three roll-mill. The influence of the mixing method, the nature of the fillers and the filler rate on the electrical properties of the composites has been analyzed. The morphology, as well as the percolation and the conduction mechanisms have been studied. The tensile properties of the composites were also analyzed. Finally, the electromechanical coupled properties of the most promising composites were tested, allowing us to propose a formulation as a stretchable electrode.
|
242 |
Hierarchical carbon structures with vertically- aligned nanotube carpets for oil-water separation under different conditionsKiaei, Kimia 05 September 2019 (has links)
No description available.
|
243 |
BIO-OIL MODIFIED ASPHALT AS A NOVEL AND IMPROVED CONSTRUCTION MATERIAL & CARBON NANOTUBES FOR TARGETED ADSORPTION OF BENZOIC ACIDArsano, Iskinder Yacob 25 August 2020 (has links)
No description available.
|
244 |
Piezoresistive Behavior of Carbon Nanotube based Poly(vinylidene fluoride) Nanocomposites towards Strain Sensing ApplicationsKe, Kai 21 April 2016 (has links) (PDF)
With the development of modern industrial engineering technology, increasing demands of multifunctional materials drive the exploration of new applications of electrical conductive polymer nanocomposites (CPNCs). Toward applications of smart materials, sensing performance of CPNCs has gained immense attention in the last decade. Among them, strain sensors, based on piezoresistive behavior of CPNCs, are of high potential to carry out structural health monitoring (SHM) tasks. Poly(vinylidene fluoride) (PVDF) is highly thought to be potential for SHM applications in civil infrastructures like bridges and railway systems, mechanical systems, automobiles, windgenetors and airplanes, etc. because of its combination of flexibility, low weight, low thermal conductivity, high chemical corrosion resistance, and heat resistance, etc.
This work aimed to achieve high piezoresistive sensitivity and wide measurable strain ranges in carbon nanotube based poly(vinylidene fluoride) (PVDF) nanocomposites. Four strategies were introduced to tune the sensitivity of the relative electrical resistance change (ΔR/R0) versus the applied tensile strain for such nanocomposites. Issues like the influence of dispersion of multi-walled carbon nanotubes (MWCNTs) on initial resistivity of PVDF nanocomposites and conductive network structure of MWCNTs, as well as piezoresistive properties of the nanocomposites, were addressed when using differently functionalized MWCNTs (strategy 1).
In addition, the effects of crystalline phases of PVDF, mechanical ductility of its nanocomposites and interfacial interactions between PVDF and fillers on piezoresistive properties of PVDF nanocomposites were studied. Using hybrid fillers, to combine MWCNTs with conductive carbon black (strategy 2) or isolating organoclay (strategy 3), piezoresistive sensitivity and sensing strain ranges of PVDF nanocomposites could be tuned. Besides, both higher sensitivity and larger measurable strain ranges are achieved simultaneously in PVDF/MWCNT nanocomposites when using the ionic liquid (IL) BMIM+PF6- as interface linker/modifier (strategy 4).
The detailed results and highlights are summarized as following:
1. The surface functionalization of MWCNTs influences their dispersion in the PVDF matrix, the PVDF-nanotube interactions and crystalline phases of PVDF, which finally results in different ΔR/R0 and the strain at the yield point (possibly the upper limit of sensing strain ranges). As a whole, regarding to the fabrication of strain sensors based on PVDF/MWCNT nanocomposite, in contrast to pristine CNTs, CNTs-COOH and CNTs-OH, CNT-NH2 filled PVDF nanocomposites possess not only high piezoresistive sensitivity but also wide measurable strain ranges. Gauge factor, i.e. GF, is ca.14 at 10% strain (strain at the yield point) for the nanocomposites containing 0.75% CNTs-NH2.
2. Using hybrid fillers of CNTs and CB to construct strain-susceptible network structure (conductive pathway consisting of string-like array of CNTs and CB particles) enhances the piezoresistive sensitivity of PVDF nanocomposites, which is tightly associated with the CNT content in hybrid fillers and mCNTs/mCB. The best piezoresistive effect is achieved in PVDF nanocomposites with fixed CNT content lower than the ΦC (0.53 wt. %) of PVDF/CNT nanocomposites.
3. ΔR/R0 and possible sensing strain ranges of PVDF nanocomposites were tailored by changing crystalline phases of PVDF and PVDF-MWCNT interactions. Besides, the increase of the strain at yield point in PVDF nanocomposites filled by CNTs-OH is more obvious than that in the nanocomposites containing the same amount of clay and CNTs. The nanocomposite consisting of 0.25% clay and 0.75% CNTs-OH have ca. 70% increase of the strain at the yield point (17%) and the GF at this strain is ca. 14, while GF for the nanocomposite filled by only 0.75% CNTs-OH is ca. 5 at 10% strain.
4. IL BMIM+PF6- served as interface linker for PVDF and MWCNTs, which significantly increased the values of ΔR/R0 and strain at the yield point of PVDF nanocomposites simultaneously. Besides, this increases with increasing IL content. With the aid of IL, the dispersion of nanotube and toughness of the nanocomposites are greatly improved, but the electrical conductivity of the nanocomposites is decreased with the incorporation of IL, which is related to the IL modified PVDF-MWCNT interface connection or bonding. GF reaches ca. 60 at 21% strain (the strain at the yield point) for PVDF nanocomposites filled by 10% IL premixed 2%CNTs-COOH.
|
245 |
A quantum hall effect without landau levels in a quasi one dimensional systemBrand, Janetta Debora 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: The experimental observation of the quantum Hall effect in a two-dimensional electron gas posed
an intriguing question to theorists: Why is the quantization of conductance so precise, given the
imperfections of the measured samples? The question was answered a few years later, when a
connection was uncovered between the quantum Hall effect and topological quantities associated
with the band structure of the material in which it is observed. The Hall conductance was revealed
to be an integer topological invariant, implying its robustness to certain perturbations.
The topological theory went further than explaining only the usual integer quantum Hall effect
in a perpendicular magnetic field. Soon it was realized that it also applies to certain systems in
which the total magnetic flux is zero. Thus it is possible to have a quantized Hall effect without
Landau levels.
We study a carbon nanotube in a magnetic field perpendicular to its axial direction. Recent
studies suggest that the application of an electric field parallel to the magnetic field would induce
a gap in the electronic spectrum of a previously metallic carbon nanotube. Despite the quasi onedimensional
nature of the carbon nanotube, the gapped state supports a quantum Hall effect and
is associated with a non zero topological invariant. This result is revealed when an additional
magnetic field is applied parallel to the axis of the carbon nanotube. If the flux due to this
magnetic field is varied by one flux quantum, exactly one electron is transported between the
ends of the carbon nanotube. / AFRIKAANSE OPSOMMING: Die eksperimentele waarneming van die kwantum Hall effek in ’n twee-dimensionele elektron gas
laat ’n interessante vraag aan teoretiese fisikuste: Waarom sou die kwantisasie van die geleiding
so presies wees al bevat die monsters, waarop die meetings gedoen word, onsuiwerhede? Hierdie
vraag word ’n paar jaar later geantwoord toe ’n konneksie tussen die kwantum Hall effek en
topologiese waardes, wat verband hou met die bandstruktuur van die monster, gemaak is. Dit
is aan die lig gebring dat die Hall geleiding ’n heeltallige topologiese invariante is wat die robuustheid
teen sekere steurings impliseer. Die topologiese teorie verduidelik nie net die gewone
kwantum Hall effek wat in ’n loodregte magneetveld waargeneem word nie. Dit is ook moontlik
om ’n kwantum Hall effek waar te neem in sekere sisteme waar die totale magneetvloed nul is.
Dit is dus moontlik om ’n gekwantiseerde Hall effek sonder Landau levels te hˆe.
Ons bestudeer ’n koolstofnanobuis in ’n magneetveld loodreg tot die aksiale rigting. Onlangse
studies dui daarop dat die toepassing van ’n elektriese veld parallel aan die magneetveld ’n
gaping in die elektroniese spektrum van ’n metaliese koolstofnanobuis induseer. Ten spyte van
die een-dimensionele aard van die koolstofnanobuis ondersteun die gapings-toestand steeds ’n
kwantum Hall effek en hou dit verband met ’n nie-nul topologiese invariante. Hierdie resultaat
word openbaar wanneer ’n bykomende magneetveld parallel tot die as van die koolstofnanobuis
toegedien word. Indien die vloed as gevolg van hierdie magneetveld met een vloedkwantum
verander word, word presies een elektron tussen die twee kante van die koolstofnanobuis vervoer.
|
246 |
Thermal transport at carbon nanotube and graphene interfaces using atomistic modelsChen, Liang 27 May 2016 (has links)
Phonons are primary heat carriers in carbon nanotubes (CNTs) and graphene; a fundamental understanding of phonon transport in these nano-structures is required for the energy efficient design of their devices such as integrated circuit, flexible displays, and transparent electrodes. In this work, atomistic simulations have been performed to investigate thermal transport at interfaces of CNT and graphene that are typically encountered in their applications, e.g., CNT-CNT junctions on silicon oxide substrate, interfaces between shells of double-wall CNTs (DWNTs), and graphene-metal interfaces. Firstly, heat dissipation at CNT junctions supported on the silicon dioxide substrate is investigated using molecular dynamics (MD) simulations and methods for phonon spectrum analysis. The results show the inefficient heat removal from CNTs not making direct contact with the oxide substrate is responsible for the breakdown of CNT network. At interfaces between shells of DWNTs, the radial vibration modes are identified as phonons that are strongly coupled and can efficiently exchange energy between shells of DWNTs. Secondly, the thermal conductivity of suspended single layer graphene (SLG) and SLG supported on Cu is determined using equilibrium MD simulations following Green-Kubo method and relaxation time approximation approach at room temperature. It is demonstrated that the interaction with Cu substrate can significantly reduce the thermal conductivity of SLG, and that the reduction of thermal conductivity from three acoustic phonons is the major reason. Lastly, using atomistic Green’s function method and density function theory calculations, the thermal boundary conductance at interfaces across graphene layers sandwiched by different metals including Cu, Au, and Ti is predicted. The work shows how the bonding strength changes the graphene/metal and graphene/graphene phonon coupling, and demonstrated the transition of thermal transport mechanism from metal/graphene dominated resistance to graphene/graphene dominated resistance as the metal/graphene bonding strength increases in metal/MLG/metal structure.
|
247 |
Thermoacoustic and photoacoustic characterizations of few-layer graphene by pulsed excitationsWang, Xiong, Witte, Russell S., Xin, Hao 04 April 2016 (has links)
We characterized the thermoacoustic and photoacoustic properties of large-area, few-layer graphene by pulsed microwave and optical excitations. Due to its high electric conductivity and low heat capacity per unit area, graphene lends itself to excellent microwave and optical energy absorption and acoustic signal emanation due to the thermoacoustic effect. When exposed to pulsed microwave or optical radiation, distinct thermoacoustic and photoacoustic signals generated by the few-layer graphene are obtained due to microwave and laser absorption of the graphene, respectively. Clear thermoacoustic and photoacoustic images of large-area graphene sample are achieved. A numerical model is developed and the simulated results are in good accordance with the measured ones. This characterization work may find applications in ultrasound generator and detectors for microwave and optical radiation. It may also become an alternative characterization approach for graphene and other types of two-dimensional materials. (C) 2016 AIP Publishing LLC.
|
248 |
CARBON NANOTUBE AUGMENTATION OF A BONE CEMENT POLYMERMarrs, Brock Holston 01 January 2007 (has links)
Acrylic bone cement is widely used as a structural material in orthopaedics, dentistry, and orofacial surgery. Although bone cement celebrates four decades of success, it remains susceptible to fatigue fracture. This type of failure can directly lead to implant loosening, revision surgery, and increased healthcare expenditures. The mechanism of fatigue failure is divided into three stages: 1) fatigue crack initiation, 2) fatigue crack propagation, and 3) fast, brittle fracture. Adding reinforcing fibers and particles to bone cement is a proposed solution for improving fatigue performance. The mechanical performance of these reinforced bone cements is limited by fiber ductility, fibermatrix de-bonding, elevated viscosity, and mismatch of fiber size and scale of fatigue induced damage. In this dissertation, I report that adding small amounts (0% - 10% by weight) of multiwall carbon nanotubes (MWNTs) enhances the strength and fatigue performance of single phase bone cement. MWNTs (diameters of 10-9 10-8 m; lengths of 10-6 10-3 m) are a recently discovered nanomaterial with high surface area to volume ratios (conferring MWNT bone cement composites with large interfaces for stress transfer) that are capable of directly addressing sub-microscale, fatigue induced damage. MWNTs (2wt%) significantly increased the flexural strength of single phase bone cement by a modest 12%; whereas, similar additions of MWNTs dramatically enhanced fatigue performance by 340% and 592% in ambient and physiologically relevant conditions, respectively. Comparing the fatigue crack propagation behaviors of reinforced and unreinforced single phase bone cements revealed that the reinforcing mechanisms of MWNTs are strongly dependent on stress intensity factor, K, a numerical parameter that accounts for the combinatorial effect of the applied load and the crack size. As the crack grows the apparent stress at the crack tip intensified and the MWNTs lost their reinforcing capabilities. For that reason, it is likely that the predominant role of the MWNTs is to reinforce the bone cement matrix prior to crack initiation and during the early stages of crack propagation. Therefore, MWNTs are an excellent candidate for improving the clinical performance of bone cement, thereby improving implant longevity and reducing patient risk and healthcare costs.
|
249 |
MOLECULAR TRANSPORT PROPERTIES THROUGH CARBON NANOTUBE MEMBRANESMajumder, Mainak 01 January 2007 (has links)
Molecular transport through hollow cores of crystalline carbon nanotubes (CNTs) are of considerable interest from the fundamental and application point of view. This dissertation focuses on understanding molecular transport through a membrane platform consisting of open ended CNTs with ~ 7 nm core diameter and ~ 1010 CNTs/cm2 encapsulated in an inert polymer matrix. While ionic diffusion through the membrane is close to bulk diffusion expectations, gases and liquids were respectively observed to be transported ~ 10 times faster than Knudsen diffusion and ~ 10000-100000 times faster than hydrodynamic flow predictions. This phenomenon has been attributed to the non-interactive and frictionless graphitic interface. Functionalization of the CNT tips was observed to change selectivity and flux through the CNT membranes with analogy to gate-keeper functionality in biological membranes. An electro-chemical diazonium grafting chemistry was utilized for enhancing the functional density on the CNT membranes. A strategy to confine the reactions at the CNT tips by a fast flowing liquid column was also designed. Characterization using electrochemical impedance spectroscopy and dye assay indicated ~ 5-6 times increase in functional density. Electrochemical impedance spectroscopy experiments on CNT membrane/electrode functionalized with charged macro-molecules showed voltage-controlled conformational change. Similar chemistry has been applied for realizing voltage-gated transport channels with potential application in trans-dermal drug delivery. Electrically-facilitated transport ( a geometry in which an electric field gradient acts across the membrane) through the CNT and functionalized CNT membranes was observed to be electrosmotically controlled. Finally, a simulation framework based on continuum electrostatics and finite elements has been developed to further the understanding of transport through the CNT membranes.
|
250 |
Structure et croissance de nanotubes de Ge-imogolite simple et double-paroiMaillet, Perrine 08 October 2010 (has links) (PDF)
Les Imogolites (OH)3Al2O3Si(OH) sont des minéraux naturels découverts en 1962 dans des sols volcaniques japonais qui présentent une structure analogue à celle des nanotubes de carbone. Leur synthèse, décrite depuis 1977, permet l'obtention de tubes bien calibrés et monodisperses. La récente mise en évidence de la possibilité de synthétiser des analogues au germanium en grande quantité en a fait un matériau de choix dans le cadre de mon sujet de thèse visant à préparer des matériaux mésoporeux à base de nanoparticules anisotropes. Lors de la caractérisation de ces imogolites par diffusion de rayons X aux petits angles (SAXS) et microscopie électronique en transmission (MET) et à force atomique (AFM), nous avons montré que ces analogues d'Imogolite sont bien des nanotubes, mais qu'ils existent sous deux formes : des tubes à paroi unique mais également des tubes à paroi double jamais observés à ce jour. La concentration importante utilisée pour cette synthèse a également permis de mieux définir l'espèce précurseur de ces nanotubes appelée proto-imogolite et mal connue jusqu'ici. Après une identification du paramètre déterminant la formation de l'une ou l'autre des structures, nous avons étudié en détail le mécanisme et la cinétique de croissance de ces imogolites. Enfin, des premiers tests sur l'organisation de ces nanotubes en forte concentration ou au sein de microgouttes permettent d'observer leur tendance à s'organiser, propriété prometteuse pour le développement futur d'applications.
|
Page generated in 0.03 seconds