• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1050
  • 406
  • 311
  • 115
  • 84
  • 55
  • 36
  • 29
  • 19
  • 16
  • 14
  • 14
  • 14
  • 14
  • 14
  • Tagged with
  • 2614
  • 412
  • 302
  • 255
  • 233
  • 220
  • 214
  • 201
  • 190
  • 179
  • 154
  • 142
  • 138
  • 135
  • 133
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of organic matter on the bioavailability and toxicity of nickel to the amphipod <i>hyalella azteca</i>

Doig, Lorne Edward 17 September 2004
Understanding Ni speciation in solution and the partitioning of Ni between solution and solid sediment is important in determining Ni bioavailability and toxicity to <i> Hyalella azteca </i> in sediments. Water-only Ni toxicity tests were conducted to evaluate the effects of dissolved organic matter on Ni speciation and bioavailability. Test substances chemically and spectroscopically characterized for use in these tests included Little Bear Lake sediment, peat moss, and Suwannee River humic and fulvic acids. Nickel speciation, bioavailability and toxicity in the presence of dissolved organic matter was assessed via three methods: ion exchange measurements of the free Ni2+ ion, mathematical modeling using the Windermere Humic Aqueous Model (WHAM VI), and toxicity testing with <i> H. azteca</i>. It was found that the main bioavailable Ni species at the pHs tested (pH 8.10 - 8.33) was the free Ni2+ ion. This research also demonstrated that Ni may be significantly complexed, or largely free and labile, depending on the Ni:dissolved organic carbon ratio. Overall, the Ni:dissolved organic carbon ratio plays a greater role than either dissolved organic carbon source or fraction in determining Ni speciation and Ni bioavailability and toxicity to aquatic organisms. <p> Natural sediment was titrated with Ni under anaerobic conditions to evaluate the partitioning of Ni between solution and solid phase as pH varied (pHs 6, 7, 8). There was a noticeable increase in sediment Ni complexation with increasing pH. <p> To evaluate the influence of organic matter on Ni bioavailability and toxicity in sediments, 10-d toxicity tests (using H. azteca) were conducted with Ni spiked over a range of concentrations in both formulated and field-collected sediments. The total organic carbon content of sediment had a significant influence on Ni bioavailability to <i> H. azteca</i>. Formulated sediments with different amounts of organic carbon displayed a clear decrease in toxicity with increasing organic carbon content at the same total Ni concentration. Results from both the formulated and natural sediment tests further indicated that toxicity was strongly correlated with pore-water Ni concentration, and that toxicity estimates based on pore-water Ni exposures were comparable to separate toxicity estimates for Ni in water-only tests. While excess acid-volatile sulfide in sediment appeared to predict the absence of acute Ni toxicity, it did not predict the absence of Ni bioaccumulation. This was potentially due to the presence of multiple pore-water Ni species (i.e., Ni2+, NiHS+) which were bioavailable in the sediment micro-environment of H. azteca.
2

Influence of organic matter on the bioavailability and toxicity of nickel to the amphipod <i>hyalella azteca</i>

Doig, Lorne Edward 17 September 2004 (has links)
Understanding Ni speciation in solution and the partitioning of Ni between solution and solid sediment is important in determining Ni bioavailability and toxicity to <i> Hyalella azteca </i> in sediments. Water-only Ni toxicity tests were conducted to evaluate the effects of dissolved organic matter on Ni speciation and bioavailability. Test substances chemically and spectroscopically characterized for use in these tests included Little Bear Lake sediment, peat moss, and Suwannee River humic and fulvic acids. Nickel speciation, bioavailability and toxicity in the presence of dissolved organic matter was assessed via three methods: ion exchange measurements of the free Ni2+ ion, mathematical modeling using the Windermere Humic Aqueous Model (WHAM VI), and toxicity testing with <i> H. azteca</i>. It was found that the main bioavailable Ni species at the pHs tested (pH 8.10 - 8.33) was the free Ni2+ ion. This research also demonstrated that Ni may be significantly complexed, or largely free and labile, depending on the Ni:dissolved organic carbon ratio. Overall, the Ni:dissolved organic carbon ratio plays a greater role than either dissolved organic carbon source or fraction in determining Ni speciation and Ni bioavailability and toxicity to aquatic organisms. <p> Natural sediment was titrated with Ni under anaerobic conditions to evaluate the partitioning of Ni between solution and solid phase as pH varied (pHs 6, 7, 8). There was a noticeable increase in sediment Ni complexation with increasing pH. <p> To evaluate the influence of organic matter on Ni bioavailability and toxicity in sediments, 10-d toxicity tests (using H. azteca) were conducted with Ni spiked over a range of concentrations in both formulated and field-collected sediments. The total organic carbon content of sediment had a significant influence on Ni bioavailability to <i> H. azteca</i>. Formulated sediments with different amounts of organic carbon displayed a clear decrease in toxicity with increasing organic carbon content at the same total Ni concentration. Results from both the formulated and natural sediment tests further indicated that toxicity was strongly correlated with pore-water Ni concentration, and that toxicity estimates based on pore-water Ni exposures were comparable to separate toxicity estimates for Ni in water-only tests. While excess acid-volatile sulfide in sediment appeared to predict the absence of acute Ni toxicity, it did not predict the absence of Ni bioaccumulation. This was potentially due to the presence of multiple pore-water Ni species (i.e., Ni2+, NiHS+) which were bioavailable in the sediment micro-environment of H. azteca.
3

Hétérogénéité de la déformation plastique des monocristaux de nickel déformés à froid par ECAE

Goran, Daniel Grosdidier, Thierry. January 2007 (has links) (PDF)
Thèse de doctorat : Physique : Metz : 2007. / Thèse soutenue sur ensemble de travaux. Bibliogr. p. 38-43, 61, 68, 97-98. [VII] p. d' Annexes.
4

The electrolytic precipitation of nickel from phosphate solutions ...

Taggart, Walter Thomas. January 1903 (has links)
Thesis (Ph. D.)--University of Pennsylvania.
5

The electrolytic precipitation of nickel from phosphate solutions ...

Taggart, Walter Thomas. January 1903 (has links)
Thesis (Ph. D.)--University of Pennsylvania.
6

Microstructural modeling of irradiation creep and swelling in single crystal nickel

Smith, Richard Whiting. January 1985 (has links)
Thesis (M.S.)--University of Michigan, 1985.
7

Systematische Untersuchung der Emission geladener Teilchen in Ni+Ni-Reaktionen bei SIS-Energien

Uhlig, Florian. January 1900 (has links) (PDF)
Darmstadt, Techn. Univ., Diss., 2003. / Computerdatei im Fernzugriff.
8

Electrodeposition of nickel from chloride solutions

Wruck, William J. January 1978 (has links)
Thesis (M.S.)--University of Wisconsin--Madison. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 112-115).
9

Ein- und Zwei-Photon-Photoemissionsspektroskopie von Oberflächenzuständen an Ni(111)

Paucksch, Roland. January 2000 (has links) (PDF)
Essen, Universiẗat, Diss., 2000.
10

Präparation von Ni-C-Multischichten und Mischsystemen mit dem PLD-Zweistrahlverfahren und Untersuchung der thermischen Stabilität der Schichtsysteme

Sewing, Andreas. January 2002 (has links) (PDF)
Dresden, Techn. Universiẗat, Diss., 2002.

Page generated in 0.0264 seconds