Spelling suggestions: "subject:"NMR, array crystallographic"" "subject:"NMR, foray crystallographic""
1 |
Molecular studies of organometallic carbohydrates and related compoundsArmishaw, Olga Anne January 1997 (has links)
No description available.
|
2 |
Structural and functional studies of proteins from the Hippo signalling pathwayCherrett, Claire January 2011 (has links)
The paralogous multi-functional adaptor proteins YAP and TAZ are nuclear effectors of the Hippo pathway, a central regulator of developmental organ size control, tissue homeostasis and tumour suppression. YAP/TAZ target the TEAD transcription factor family to promote cell survival and inhibit apoptosis. TEAD proteins contain a DNAbinding domain and a YAP/TAZ interaction domain. PCR analysis of medaka fish TEAD cDNA revealed the presence of alternative TEAD splice-forms with variations at the C-terminus of the DNA-binding domain. Structural analysis indicated the YAPbinding domain of TEAD proteins is folded and globular. NMR spectroscopy showed that the TEAD binding domain of YAP does not contain secondary structure. YAP and TAZ both contain WW domains, which are small protein-protein interaction modules. Two YAP isoforms are known, YAP1 and YAP2 that contain one and two WW domains, respectively. To date, only a single WW isoform of TAZ has been described. PCR analysis of medaka TAZ cDNA identified both single WW and tandem WW isoforms of TAZ. NMR spectroscopy was used to characterise structural, conformational, and peptide binding features of the tandem WW domains from YAP and TAZ. The YAP WW2 solution structure confirms that the domain has the canonical anti-parallel β-sheet WW fold. WW1 of YAP and both WW domains of TAZ undergo conformational exchange. The region linking the two WW domains is flexible and allows interaction of both WW domains with peptides containing single and dual PPxY binding motifs. In addition to YAP and TAZ, tandem WW domains are also present in the core and upstream Hippo pathway proteins Salvador and Kibra. Both proteins contain one atypical WW domain; the tandem WW domains of these two proteins are unstable. Understanding structure and function of Hippo pathway components could contribute to drug development and will also contribute to knowledge of protein folding and interactions.
|
3 |
Reading the Histone Code: Methyl Mark Recognition by MBT and Royal Family ProteinsNady, Nataliya 26 March 2012 (has links)
The post-translational modifications (PTMs) of histones regulate many cellular processes including transcription, replication, DNA repair, recombination, and chromosome segregation. A large number of combinations of PTMs are possible, with methylation being one of the most complex, since it is found
in three states and is recognized in a sequence specific context. Methylation of histones at key lysine residues has been shown to work in concert with other modifications to provide a Histone Code that
may determine heritable transcriptional conditions in normal and disease states. On the most basic level it is pivotal to understand how and by which proteins the numerous PTMs are recognized, as well as
mechanisms for downstream signal propagation. To address this need we developed a high-throughput method that allows analysis of up to 600 PTMs in a single experiment. This approach was utilized to characterize macromolecules interacting with the specific modifications on histone tails and to screen for the marks that bound to Malignant Brain Tumor (MBT) proteins, important chromatin regulators
implicated in cancer. All MBTs recognized either mono- or dimethyllysine histone marks, and using structure-based mutants we identified a triad of residues that were responsible for this discrimination. These results provide the foundation for the rational design of highly selective MBT inhibitors. Additionally, this thesis describes combinatorial recognition of histone modifications, as proposed in the original Histone Code hypothesis. We demonstrate that Tudor domains of UHRF1, a protein involved in epigenetic maintenance of DNA methylation, is able to read a dual modification state of histone H3 in which it is trimethylated at lysine 9 and unmodified at lysine 4. This study provides an elegant example of the combinatorial readout of histone modification states by a single domain. Together, our findings offer mechanistic insights into the recognition of methylated histone tails by MBT domains and Royal Family in general.
|
4 |
Reading the Histone Code: Methyl Mark Recognition by MBT and Royal Family ProteinsNady, Nataliya 26 March 2012 (has links)
The post-translational modifications (PTMs) of histones regulate many cellular processes including transcription, replication, DNA repair, recombination, and chromosome segregation. A large number of combinations of PTMs are possible, with methylation being one of the most complex, since it is found
in three states and is recognized in a sequence specific context. Methylation of histones at key lysine residues has been shown to work in concert with other modifications to provide a Histone Code that
may determine heritable transcriptional conditions in normal and disease states. On the most basic level it is pivotal to understand how and by which proteins the numerous PTMs are recognized, as well as
mechanisms for downstream signal propagation. To address this need we developed a high-throughput method that allows analysis of up to 600 PTMs in a single experiment. This approach was utilized to characterize macromolecules interacting with the specific modifications on histone tails and to screen for the marks that bound to Malignant Brain Tumor (MBT) proteins, important chromatin regulators
implicated in cancer. All MBTs recognized either mono- or dimethyllysine histone marks, and using structure-based mutants we identified a triad of residues that were responsible for this discrimination. These results provide the foundation for the rational design of highly selective MBT inhibitors. Additionally, this thesis describes combinatorial recognition of histone modifications, as proposed in the original Histone Code hypothesis. We demonstrate that Tudor domains of UHRF1, a protein involved in epigenetic maintenance of DNA methylation, is able to read a dual modification state of histone H3 in which it is trimethylated at lysine 9 and unmodified at lysine 4. This study provides an elegant example of the combinatorial readout of histone modification states by a single domain. Together, our findings offer mechanistic insights into the recognition of methylated histone tails by MBT domains and Royal Family in general.
|
5 |
Isolation of Lead-Amino Acid and Mercury-Amino Acid Complexes with Characterization in the Solid State, the Solution State, and the Gas PhaseSaunders, Cheryl D.L. 11 August 2009 (has links)
Although some physiological effects of toxic metal poisoning have been known for centuries, the specific chemical interactions between biological molecules and mercury(I), mercury(II) or lead(II) are not well understood. To date, only thirteen crystal structures of inorganic mercury-amino acid complexes and six crystal structures of lead-amino acid complexes have been reported with varying degrees of characterization. In order to improve our understanding of the coordination chemistry of mercury and lead in biological environments, a systematic method for the isolation of inorganic metal-amino acid complexes from acidic aqueous solutions has been developed. With this method we have prepared five new lead-amino acid complexes (with L-valine, L-isoleucine, L-phenylalanine, and L-arginine) and four new mercury-amino acid complexes (with L-alanine, D-alanine, L-proline, and N-methyl-L-alanine). These metal-amino acid complexes have been comprehensively characterized in the solid state, solution state and gas phase. The development of this isolation technique in conjunction with the exploration of a number of characterization techniques for studying metal-amino acid interactions greatly enhances the known methods by which metal-biological molecule systems are studied.
|
6 |
Isolation of Lead-Amino Acid and Mercury-Amino Acid Complexes with Characterization in the Solid State, the Solution State, and the Gas PhaseSaunders, Cheryl D.L. 11 August 2009 (has links)
Although some physiological effects of toxic metal poisoning have been known for centuries, the specific chemical interactions between biological molecules and mercury(I), mercury(II) or lead(II) are not well understood. To date, only thirteen crystal structures of inorganic mercury-amino acid complexes and six crystal structures of lead-amino acid complexes have been reported with varying degrees of characterization. In order to improve our understanding of the coordination chemistry of mercury and lead in biological environments, a systematic method for the isolation of inorganic metal-amino acid complexes from acidic aqueous solutions has been developed. With this method we have prepared five new lead-amino acid complexes (with L-valine, L-isoleucine, L-phenylalanine, and L-arginine) and four new mercury-amino acid complexes (with L-alanine, D-alanine, L-proline, and N-methyl-L-alanine). These metal-amino acid complexes have been comprehensively characterized in the solid state, solution state and gas phase. The development of this isolation technique in conjunction with the exploration of a number of characterization techniques for studying metal-amino acid interactions greatly enhances the known methods by which metal-biological molecule systems are studied.
|
Page generated in 0.0831 seconds