• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 184
  • 25
  • 18
  • 16
  • 11
  • 10
  • 8
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 362
  • 362
  • 105
  • 75
  • 70
  • 52
  • 51
  • 50
  • 47
  • 47
  • 46
  • 42
  • 41
  • 40
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

NMR Investigations Of Oriented Systems : Novel Techniques And Applications

Deepak, H S vinay 12 1900 (has links)
This thesis presents results of novel methodologies applied to oriented systems. Both pure liquid crystalline materials as well as molecules oriented in liquid crystalline matrices have been studied. In particular this thesis presents investigations related to various aspects of NMR in liquid crystalline media, such as, assignment of resonances and the study of director dynamics of spinning liquid crystals in different phases and with different symmetry. Simplified methods for structure determination of solutes dissolved in liquid crystal solvents have been proposed. Diffusion ordered spectroscopy has been used to study a mixture of liquid crystals of opposite diamagnetic susceptibility at its coexistent phase. The methods presented represent novel techniques to characterize the liquid crystalline phase. NMR spectroscopy which has become a method of choice for understanding ordering mechanisms of mesogens requires a robust method for obtaining assignments of the NMR spectra of various nuclei that are found in the mesogens [1, 2]. It turns out that the spectra in the isotropic phase and in the nematic phase of a liquid crystal molecule are very different due to the presence of chemical shift anisotropy in the mesophase spectrum. There are a host of methodologies available for assigning spectra in the isotropic phase [3]. These methods however fail, when applied to the spectrum of the molecules in the mesophase due to the dominating role of strong anisotropic interactions, such as homonuclear couplings among protons. Problems arising while assigning spectral lines of liquid crystals in their nematic phase have been dealt with in chapter 2. To circumvent these problems, a property of the liquid crystal molecules under off-magic angle sample spinning can be utilized. It has been shown by Courtieu et al. [4] that the director/symmetry axis of a Δχ + ve liquid crystal aligns along the spinning axis for θ between 0 ° and θm, where θ is the angle between the spinning axis and the magnetic field and θm = 54.7° is the magic angle. It may be noted that the spectrum of θ = 0° spinning angle corresponds to the normal static spectrum, while the spectrum of θ = θm corresponds to the isotropic spectrum. In an earlier study, Teearr et al. [5] had recorded the 13C liquid crystal spectra as a function of very closely spaced θ values from 90° all the way up to 0°. From these plots of chemical shift versus the angle of spinning, it is possible to follow the trajectory of each 13C line from its position from θ = θm to θ = 0° and then match the spectrum in the isotropic phase (equivalently the magic angle sample spinning spectrum of the nematic phase) to the spectrum of the static sample in the nematic phase. However this method requires recording spectra at closely spaced angle intervals, so that one can unambiguously follow the trajectory of each of the lines without missing out any crossover of trajectories. However, this operation is time consuming. In this thesis we propose an alternate method, where we utilize the fact that the above trajectory has a very distinct relationship to the isotropic and anisotropic chemical shift and the problem of assignment does not require a continuous variation of angles, but just a few selected experiments should enable the assignment of the spectrum in the anisotropic phase. Thus the method of assignment has been made simpler and faster. It is shown that in addition to the assigned isotropic spectrum, only one other Off-magic angle spinning spectrum whose spinning angle θ is accurately known is necessary to obtain the complete assignment of the static spectrum. This procedure is non-trivial due to possibilities of errors in assignments arising out of inaccuracies in the knowledge of chemical shifts and the spinning angle. A computational procedure is proposed to take into account deviations arising out of non-ideal experimental conditions. A discussion regarding the details of the procedure and also situations where there can be ambiguities and how they can be resolved has been elaborated. The developed method has been demonstrated on a well known thermotropic liquid crystalline system, N-(4-ethoxybenzylidene)-4-n-butlyaniline [EBBA]. Since assignment of resonances in the nematic phase is a primary requirement for any further analysis regarding the ordering and deeper understanding of the role of various substituents in the mesogens we believe our novel prescription will be of immense use and utility. The third chapter presents the study of director dynamics in a lyotropic liquid crystal composed of Potassium laurate, 1-Decanol and D2O [6] under variable angle sample spinning using 2H NMR spectrum of D2O. A very interesting interplay of the magnetic orienting torque due to interaction of the liquid crystal director with the magnetic field and viscous torque arising from the viscosity of the sample on the director comes to fore. The relative magnitude of these torques has a direct bearing on the spectral pattern and line shapes observed, providing valuable insights into magnetohydrodynamics of the spinning liquid crystals. This study leads to even more interesting behavior for liquid crystals which deviate from uniaxial symmetry. This competition between magnetic and viscous torques has been quantitatively visualized by simulation of the 2H spectrum. It has been possible to visualize the observed spread in the director distribution arising out of viscous torque in terms of the energetics of the system under fast spinning. If the magnetic torque dominates over the viscous torque, then the equilibrium corresponds to the director orientation of δ = 0° where the energy is at its minimum. However the viscous and magnetic torques can become comparable as it may happen if the spinning angle is close to the magic angle or when the Δχ of the system is small. In those circumstances additional energy from the viscous torque causes the distribution of the director orientation to spread further away from δ = 0° for a positive Δχ liquid crystal. The trigonometric factor [P2(cosθ)∗P2(cosδ)] being proportional to the total energy of the system has been plotted against the spinning angle. The spectrum of the biaxial phase [7] as a function of the spinning angle shows more interesting director distribution. Here the patterns of the director distribution are observed on either side of the magic angle due to the presence of more than one director. The patterns observed also have information about the symmetry of the phase. This work provides insights into magnetohydrodynamics of spinning liquid crystals and can also be of relevance to samples of biological interest such as bicelles with protein oriented in them [8]. The fourth chapter deals with a novel characterization method relevant for the biaxial phase [9]. As an off shoot of the previous chapter, it effectively overcomes the disadvantages of the previous experimental methods which require simulation and line shape fitting to extract useful parameters. The chapter also presents the measurement of geometrical parameters of oriented solutes in phases exhibiting biaxial symmetry. The measured parameters show the effect of the onset of biaxiality as significant deviation in the value of the measured parameter. The utility of liquid crystalline media as solvents in high resolution NMR spectroscopy has been very rewarding since the pioneering work of Saupe and Englert [6]. The intramolecular interactions within solutes are only partially averaged. As a result one obtains a liquid like spectrum while at the same time very useful anisotropic interactions such as dipolar couplings, chemical shift anisotropies, quadrupolar couplings and anisotropic part spin-spin J couplings are extracted [10]. NMR spectra of molecules dissolved in thermotropic liquid crystals have long been used to obtain structural and orientational information. As the same time the complexity of the spectrum increases with the increase in the number of spins and the reduction in symmetry of the molecule, which can make the spectral analysis forbidding. Generally proton spectra have been used to obtain the geometry of the proton skeleton of the molecule and the information that includes dilute X nuclei such as 13C and 15N are available only from satellites which are buried in the intense proton spectrum. Different inequivalent dilute spins coupled to protons form different coupled spin systems in their natural abundance and appear as satellites in the proton spectra. Identification of transitions belonging to each of the spin system is essential to determine heteronuclear dipolar couplings, which is a formidable task. The fifth chapter deals with development of the techniques to obtain the complete structure of the dissolved molecules including nuclei other than protons in their natural abundance. The use of inverse experiments has been elaborated to overcome the problems of sensitivity and complexity for solute molecules having larger number of spins. In the present study using HSQC and HMQC experiments, we have selectively detected spectra of each inequivalent rare spin coupled to protons in pyrazine, pyrimidine and pyridazine dissolved in thermotropic Phase 4 and Phase 5 liquid crystal solvents. This way we could obtain enhancement in the intensity of satellites signals without the interference from the signals connected to the major isotopomers. Besides, we could resolve a complex spectrum into its sub-spectra corresponding to individual 13C and 15N isotopomers. This separation of the spectra corresponding to individual sub-spin systems makes analysis easy and helps analyze larger systems with higher number of spins and lower symmetry. Besides 1H-1H dipolar couplings, 13C-1H and 15N-1H dipolar couplings have been determined in natural abundance, thereby giving the complete dipolar coupling network between all the spins in the molecule. In this treatment pyrazine, pyrimidine and pyridazine have been used as examples of methodology developed. It is expected that the method will be of wider use for several other similar systems. Chapter six describes the diffusion ordered spectroscopic investigation [11] of a phase arising out of mixing together two liquid crystals having opposite signs of diamagnetic susceptibility anisotropy [12]. Towards this end we have used CH3CN as a probe molecule. The spectrum of CH3CN has with it the information about the parallel or perpendicular orientation of the phase. Such a mixture of liquid crystals have shown interesting behavior at the critical temperature where the two phases seem to coexist. It has been an interesting question to understand what exactly happens for the molecular orientation when the macroscopic anisotropy Δχ vanishes. Earlier Jokisaari et al. [13] have varied the temperature very finely taking due precautions to maintain homogeneity and stability of temperature to the tune of ±0.05K across the sample volume. Their observation of a powder pattern exactly in the critical temperature was interpreted as arising out of a distribution of directors equally oriented in all directions. In our experiments we have measured the diffusion coefficient of the probe molecule i.e. acetonitrile as we change the temperature of the system through the critical temperature. At the critical temperature we have a situation of being able to measure the parallel and perpendicular orientational diffusion coefficients simultaneously. The measurements show that the parallel component of the diffusion coefficient has reduced and the perpendicular component has increased in comparison to the trend in the immediate neighboring temperatures, thereby indicating that at the exact critical condition the liquid crystal mixture consists of an isotropic distribution of molecules. As a check to rule out any exchange of molecules in different domains of parallel and perpendicular orientations an EXSY experiment was conducted with a mixing time which was same as that of the diffusion delay in the DOSY experiment. The EXSY spectrum showed no exchange cross peaks between the two orientations, this confirms that the anisotropy of the diffusion vanishes at the critical temperature. Nematic liquid crystals exhibit a rich variety of phases and properties. NMR is a very powerful tool to study the various phases at the microscopic and molecular level. It has also turned out that some of these properties can be usefully utilized for investigation of both small and large molecules by NMR. Thus this thesis has attempted to expand several of the techniques already available for various applications and extend the utility of NMR for the study of partially ordered systems.
222

Biochemical and Structural Studies on the Adaptor Protein p130Cas

Nasertorabi, Fariborz January 2005 (has links)
Crk associated substrate (Cas) is an adaptor protein that becomes phosphorylated upon integrin signaling and influences regulation of cell processes such as migration, proliferation and survival. It consists of multiple domains and regions that can interact with several signaling proteins involved in different signaling pathways. Cas was first discovered as a highly phosphorylated protein in v-Src and v-Crk transformed cells, showing involvement of this protein in cell transformation High level of Breast cancer antiestrogen resistance protein (BCAR-1), a homologue to Cas has shown to correlate with rapid reoccurrence of breast cancer and also create resistance towards Tamoxifen, the widely used medicine for receptor positive breast cancer patients. We have defined boundaries of two regions of Cas termed serine rich region (SRR) and Src binding domain (SBD) respectively and have isolated these segments for biochemical and structural studies. The structure of the serine rich part of Cas has been determined by NMR spectroscopy and reveals a four-helix bundle with unusually long loops. The 14-3-3 protein binds to Cas in a phospho-serine dependent manner and our study suggests that the binding site is located between two helices. The SH2-SH3 domain of a Src family kinase, Lck has also been crystallized in complex with a nine residue long peptide corresponding to the region in Cas that binds to SH2 domains. The structure of this complex has been solved at 2.7Å and shows that Cas binds Src family kinases (SFK) with high affinity suggesting a specific interaction between these two molecules. The biochemical studies on the specific binding site of these molecules show that SFK can bind to any of the phosphorylated tyrosines on the SH2 binding domain of Cas and only one phospho-tyrosine is enough to establish the binding. This binding assay does also indicate that SH3 binding domain of Cas is not essential for SFK binding.
223

Antigens derived from the mucin MUC1 : Solution and solid-phase synthesis of saccharides, peptides and glycopeptides

Pudelko, Maciej January 2008 (has links)
Mucin is a term used to describe a large family of heavily glycosylated proteins which are present on the surfaces of secretory epithelial cells and are overexpressed by many carcinomas. Membrane-bound mucin MUC1 is of special interest. Its backbone consists of repeating units of twenty amino acids with five potential glycosylation sites. These sites are expanded to structures like the T (Galβ(1->3)GalNAcα-Ser/Thr) and Tn (GalNAcα-Ser/Thr) antigens by the action of various glycosyltransferases. In different types of carcinomas these epitopes are being terminated by sialic acid residues to form among others: 2,3-sialyl-T and sialyl-Tn structures due to the elevated levels of different sialyltransferases. Solid-phase synthesis of the selected antigens derived from the mucin MUC1 has been developed and optimized. A chemoenzymatic approach has been used to effectively prepare 2,3-sialyl-T and 2,6-sialyl-Tn glycopeptides. The formation of intramolecular sialic acid lactones in presence of acetic acid was investigated. The stability of lactones formed from 2,3-sialyl-T towards water was studied using NMR spectroscopy and it appeared that 1''->2' lactone displayed remarkable strength to hydrolysis and it was suggested as a candidate for cancer vaccine. Gel-phase 19F NMR spectroscopy is known to be a very good tool to characterize resin-bound products using fluorinated protecting groups and linker molecules. The hydrophobic peptide LLLLTVLTV, which is a fragment from the MUC1 signal sequence, was prepared using solid-phase synthesis according to a modified Fmoc protocol with more active coupling reagent, stronger base, and the isopropylidene dipeptide Fmoc-Leu-Thr-(ΨMe,Mepro)-OH. Gel-phase 19F NMR spectroscopy was used to evaluate peptide chain aggregation and coupling and deprotection efficiency. A carbamate linker strategy proved to be effective in solid-phase synthesis of serine-based neoglycolipids with terminal amino functionality. Neoglycolipids were covalently bound to secondary amines in microtiter plates using squaric acid ester methodology. These arrays have potential to study the interactions between carbohydrates and e.g. proteins and microbes. The new fluorinated α-amino protective group [1-(4-(4-fluorophenyl)-2,6-dioxocyclohexylidene)ethyl] Fde was developed. This group is cleaved with hydrazine in DMF solution. By using amino acids protected with this group, it was possible to quantify the efficiency of peptide coupling using gel-phase 19F NMR spectroscopy.
224

Identification of brominated organic compounds in aquatic biota and exploration of bromine isotope analysis for source apportionment

Unger, Maria January 2010 (has links)
Brominated organic compounds (BOCs) of both natural and anthropogenic origin are abundant in the environment. Most compounds are either clearly natural or clearly anthropogenic but some are of either mixed or uncertain origin. This thesis aims to identify some naturally produced BOCs and to develop a method for analysis of the bromine isotopic composition in BOCs found in the environment. Polybrominated dibenzo-p-dioxins (PBDDs) in the Baltic Sea are believed to be of natural origin although their source is unknown. Since marine sponges are major producers of brominated natural products in tropical waters, BOCs were quantified in a sponge (Ephydatia fluviatilis) from the Baltic Sea (Paper I). The results showed that the sponge does not seem to be a major producer of PBDDs in the Baltic Sea. In this study, mixed brominated/chlorinated dibenzo-p-dioxins were however discovered for the first time in a background environment without an apparent anthropogenic source. The use of nuclear magnetic resonance spectroscopy (NMR) is unusual in analytical environmental chemistry due to its sample requirements. Preparative capillary gas chromatography was used to isolate a sufficient amount of an unidentified BOC from northern bottlenose whale (Hyperoodon ampullatus) blubber (Paper II) to enable NMR analysis for identification of the compound. The bromine isotopic composition of BOCs may give information on the origin and environmental fate of these compounds. The first steps in this process are the development of a method to determine the bromine isotope ratio in environmentally relevant BOCs (Paper III) and measuring the bromine isotope ratio of several standard substances to establish an anthropogenic endpoint (Paper IV). / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.
225

Functional studies of a membrane-anchored cellulase from poplar

Jonsson Rudsander, Ulla January 2007 (has links)
Cellulose in particular and wood in general are valuable biomaterials for humanity, and cellulose is now also in the spotlight as a starting material for the production of biofuel. Understanding the processes of wood formation and cellulose biosynthesis could therefore be rewarding, and genomics and proteomics approaches have been initiated to learn more about wood biology. For example, the genome of the tree Populus trichocarpa has been completed during 2006. A single-gene approach then has to follow, to elucidate specific patterns and enzymatic details. This thesis depicts how a gene encoding a membrane-anchored cellulase was isolated from Populus tremula x tremuloides Mich, how the corresponding protein was expressed in heterologous hosts, purified and characterized by substrate analysis using different techniques. The in vivo function and modularity of the membrane-anchored cellulase was also addressed using overexpression and complementation analysis in Arabidopsis thaliana. Among 9 genes found in the Populus EST database, encoding enzymes from glycosyl hydrolase family 9, two were expressed in the cambial tissue, and the membrane-anchored cellulase, PttCel9A1, was the most abundant transcript. PttCel9A1 was expressed in Pichia pastoris, and purified by affinity chromatography and ion exchange chromatography. The low yield of recombinant protein from shake flask experiments was improved by scaling up in the fermentor. PttCel9A1 was however highly heterogenous, both mannosylated and phosphorylated, which made the protein unsuitable for crystallization experiments and 3D X-ray structure determination. Instead, a homology model using a well-characterized, homologous bacterial enzyme was built. From the homology model, interesting point mutations in the active site cleft that would highlight the functional differences of the two proteins could be identified. The real-time cleavage patterns of cello-oligosaccharides by mutant bacterial enzymes, the wildtype bacterial enzyme and PttCel9A1 were studied by 1H NMR spectroscopy, and compared with results from HPAEC-PAD analysis. The inverting stereochemistry for the hydrolysis reaction of the membrane-anchored poplar cellulase was also determined by 1H NMR spectroscopy, and it was concluded that transglycosylation in vivo is not a possible scenario. The preferred in vitro polymeric substrates for PttCel9A1 were shown to be long, low-substituted cellulose derivatives, and the endo-1,4--glucanase activity was not extended to branched or mixed linkage substrates to detectable levels. This result indicates an in vivo function in the hydrolysis of “amorphous” regions of cellulose, either during polymerization or crystallization of cellulose. In addition, overexpressing PttCel9A1 in A. thaliana, demonstrated a correlation with decreased crystallinity of cellulose. The significance of the different putative modules of PttCel9A1 was investigated by the construction of hybrid proteins, that were introduced into a knock-out mutant of A. thaliana, and the potential complementation of the phenotype was examined. A type B plant cellulase catalytic domain could not substitute for a type A plant cellulase catalytic domain, although localization and interaction motifs were added to the N- and C-terminus. / QC 20100802
226

Asymmetric [2,3]-Sigmatropic Rearrangement of Allylic Ammonium Ylides

Blid, Jan January 2005 (has links)
The thesis describes the realization of an asymmetric [2,3]-sigmatropic rearrangement of achiral allylic amines. It is divided into two parts; the first part deals with the development of a Lewis acid-mediated [2,3]-sigmatropic rearrangement and the second the asymmetric version thereof. Quaternization of an -amino amide with various Lewis acids established BBr3 and BF3 to be the most appropriate ones. Various allylic amines were subsequently rearranged into the corresponding homoallylic amines in good to excellent syn-diastereoselectivities, revealing the endo-transition state to be the preferred pathway. The structures of the intermediate Lewis acid-amine complexes were confirmed by NMR spectroscopy studies and DFT calculations. Based on this investigation a chiral diazaborolidine was chosen as Lewis acid and was shown to efficiently promote the asymmetric [2,3]-sigmatropic rearrangement furnishing homoallylic amines in good yields and excellent enantiomeric excesses. In contrast to the achiral rearrangement mediated by BBr3 and BF3, the asymmetric version gave the opposite major diastereomer, revealing a preference for the exo-transition state in the asymmetric rearrangement. To account for the observed selectivities, a kinetic and thermodynamic pathway was presented. On the basis of a deuterium exchange experiment on a rearranged Lewis acid-amine complex and an NMR spectroscopic investigation, the kinetic pathway was shown to be favored. / QC 20100927
227

Effects of Cisplatin Analog Size on the Reaction with DNA Bases

Nandala, Swathi 01 May 2013 (has links)
Cancer is the second leading cause of death in the United States. Cisplatin is one of the well-known anti-cancer agents used to treat testicular and ovarian cancers. It mainly binds to the DNA bases, which leads to cell death. The cytotoxic activity of the cisplatin analogs is due to the interaction of platinum with nucleotides like adenine at N7 or N1 position and guanine at N7 position. Guanine is the primary target for cisplatin analogs whereas adenine is the secondary target. Cisplatin analogs, [Pt(Me5dien)(D2O)]2+[Me5dien = N,N,N’,N’,N’’-pentamethyl diethylene triamine] and [Pt(dien)(D2O)]2+[dien=diethylene triamine] were synthesized and their effects on AMP and GMP were studied using NMR spectroscopy. The experiments were conducted to examine the effects of bulk on 5’-GMP and 5’-AMP. The results suggest that bulk slows down the reaction with AMP more than with that of GMP. The order of reactivity is Pt(dien)(GMP)> Pt(dien)(AMP) > Pt(Me5dien)(GMP) > Pt(Me5dien)(AMP). The reaction of the [Pt(Me5dien)(D2O)]2+ complex with AMP leads to multiple products, some of which appear to be due to coordination at N1 instead of N7.
228

Molecularly Imprinted Polymers: Towards a Rational Understanding of Biomimetic Materials

Molinelli, Alexandra Lidia 22 November 2004 (has links)
The research described in this thesis contributes to the development of new strategies facilitating advanced understanding of the fundamental principles governing selective recognition of molecularly imprinted polymers (MIPs) at a molecular level for the rational optimization of biomimetic materials. The nature of non-covalent interactions involved in the templating process of molecularly imprinted polymers based on the self-assembly approach were investigated with a variety of analytical techniques addressing molecular level interactions. For this purpose, the concerted application of IR and 1H-NMR spectroscopy enabled studying the complexation of the template molecules 2,4-dichlorophenoxyacetic acid, quercetin, and o-, m-, and p-nitrophenol with a variety of functional monomers in the pre-polymerization solution by systematically varying the ratio of the involved components. In aqueous and non protic porogenic solvents, information on the interaction types, thermodynamics, and complex stoichiometry was applied toward predicting the optimum imprinting building blocks and ratios. Molecular dynamics simulations of 2,4-dichlorophenoxyacetic acid and its interactions with the functional monomer 4-vinylpyridine in aqueous and aprotic explicit solvent allowed demonstrating the fundamental potential of computer MD simulations for predicting optimized pre-polymerization ratios and the involved interaction types. The obtained results clearly demonstrate that the application of rapid IR/NMR pre-screening methods in combination with molecular modeling strategies is a promising strategy towards optimized imprinting protocols in lieu of the conventionally applied labor intensive and time-consuming trial-and-error approach. Furthermore, HPLC characterization of the produced MIPs compared to control polymers enabled a systematic approach to imprinting based on advanced understanding of the factors governing the formation of high-affinity binding sites during the polymerization. In addition, the importance of the combination of size, shape, and molecular functionalities for the selective recognition properties of MIPs was investigated. MIPs for the mycotoxins deoxynivalenol and zearalenone and for the antioxidant quercetin were applied as separation materials for advanced sample preparation in beverage analysis. The obtained results demonstrated the potential of MIPs for rapid one-step sample clean-up and pre-concentration from beverages such as wine and beer.
229

Molecular principles of protein stability and protein-protein interactions

Lendel, Christofer January 2005 (has links)
<p>Proteins with highly specific binding properties constitute the basis for many important applications in biotechnology and medicine. Immunoglobulins have so far been the obvious choice but recent advances in protein engineering have provided several novel constructs that indeed challenge antibodies. One class of such binding proteins is based on the 58 residues three-helix bundle Z domain from staphylococcal protein A (SPA). These so-called affibodies are selected from libraries containing Z domain variants with 13 randomised positions at the immunoglobulin Fc-binding surface. This thesis aims to describe the principles for molecular recognition in two protein-protein complexes involving affibody proteins. The first complex is formed by the Z<sub>SPA-1</sub> affibody binding to its own ancestor, the Z domain (Kd ~1 μM). The second complex consists of two affibodies: Z<sub>Taq</sub>, originally selected to bind Taq DNA polymerase, and anti-Z<sub>Taq</sub>, an anti-idiotypic binder to Z<sub>Taq</sub> with a Kd ~0.1 μM. The basis for the study is the determination of the three-dimensional structures using NMR spectroscopy supported by biophysical characterization of the uncomplexed proteins and investigation of binding thermodynamics using isothermal titration calorimetry. The free Z<sub>SPA-1</sub> affibody is a molten globule-like protein with reduced stability compared to the original scaffold. However, upon target binding it folds into a well-defined structure with an interface topology resembling that displayed by the immunoglobulin Fc fragment when bound to the Z domain. At the same time, structural rearrangements occur in the Z domain in a similar way as in the Fc-binding process. The complex interface buries 1632 Å<sup>2</sup> total surface area and 10 out of 13 varied residues in Z<sub>SPA-1</sub> are directly involved in inter-molecular contacts. Further characterization of the molten globule state of Z<sub>SPA-1</sub> revealed a native-like overall structure with increased dynamics in the randomised regions (helices 1 and 2). These features were reduced when replacing some of the mutated residues with the corresponding wild-type Z domain residues. The nature of the free Z<sub>SPA-1</sub> affects the thermodynamics of the complex formation. The contribution from the unfolding equilibrium of the molten globule was successfully separated from the binding thermodynamics. Further decomposition of the binding entropy suggests that the conformational entropy penalty associated with stabilizing the molten globule state of Z<sub>SPA-1</sub> upon binding seriously reduces the binding affinity. The Z<sub>Taq</sub>:anti-Z<sub>Taq</sub> complex buries in total 1672 Å<sup>2</sup> surface area and all varied positions in anti-Z<sub>Taq</sub> are directly involved in binding. The main differences between the Z:Z<sub>SPA-1</sub> and the Z<sub>Taq:</sub>anti-Z<sub>Taq</sub> complexes are the relative subunit orientation and certain specific interactions. However, there are also similarities, such as the hydrophobic interface character and the role of certain key residues, which are also found in the SPA:Fc interaction. Structural rearrangements upon binding are also common features of these complexes. Even though neither Z<sub>Taq</sub> nor anti-Z<sub>Taq</sub> shows the molten globule behaviour seen for Z<sub>SPA-1</sub>, there are indications of dynamic events that might affect the binding affinity. This study provides not only a molecular basis for affibody-target recognition, but also contributions to the understanding of the mechanisms regulating protein stability and protein-protein interactions in general.</p>
230

Untersuchungen zur Wechselwirkung von Interleukin-10 mit Glykosaminoglykanen mittels NMR-Spektroskopie

Künze, Georg 12 August 2015 (has links) (PDF)
Das Zytokin Interleukin-10 (IL-10) ist ein Schlüsselspieler in der Regulation des Immunsystems mit pro- und anti-inflammatorischen Funktionen. Es spielt eine wichtige Rolle bei der Terminierung und Unterdrückung einer Entzündungsantwort, die ansonsten zu einer bleibenden Schädigung des Gewebes führen kann. Eine Dysregulation von IL-10 ist mit verschiedenen Krankheitsbildern wie chronischen Entzündungen, Autoimmunerkrankungen und Krebs assoziiert. IL-10 wird von einem breiten Spektrum von Zelltypen, darunter hauptsächlich hämatopoetische Zellen, aber auch epitheliale und mesenchymale Zellen, gebildet und in den extrazellulären Raum freigesetzt, wo es mit Komponenten der extrazellulären Matrix in Kontakt kommt. Es ist bekannt, dass IL-10 an Glykosaminoglykane (GAGs) binden kann und dass diese Interaktion seine biologische Aktivität beeinflusst. GAGs sind eine Klasse linearer Polysaccharide der extrazellulären Matrix. Sie bestehen aus wiederholenden Disaccharideinheiten und haben einen hoch negativ geladenen Charakter, welcher durch einen hohen Grad an Sulfatierung in der Zuckerkette zustandekommt. Sie binden eine Vielzahl an Signalproteinen und regulieren deren biologische Funktionen, etwa indem sie Einfluss auf die Rezeptorbindung oder die räumliche Verteilung des Proteins im Gewebe nehmen. Die molekularen Mechanismen, wodurch GAGs die biologische Aktivität von IL-10 beeinflussen, sind bisher unbekannt. Insbesondere ist nichts über die strukturellen Grundlagen der Interaktion bekannt, die Voraussetzung für ihr funktionelles Verständnis sind. In dieser Arbeit wurden daher die Bindungseigenschaften von IL-10 und GAGs sowie der strukturelle Aufbau ihres molekularen Komplexes unter Verwendung von NMR-Spektroskopie in Lösung charakterisiert. Es wurde eine definierte GAG-Bindungsstelle in IL-10 identifiziert und die Bindungsepitope und Bindungsaffinitäten von GAGs bestimmt. Die Ergebnisse dieser Arbeit weisen auf eine wichtige Rolle, die GAGs in der Biologie von IL-10 spielen können, hin – etwa für seine Speicherung im Gewebe oder für die IL-10-Rezeptorbindung.

Page generated in 0.0777 seconds