• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 175
  • 133
  • 25
  • 18
  • 11
  • 8
  • 7
  • 7
  • 7
  • 6
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 419
  • 419
  • 152
  • 138
  • 134
  • 128
  • 55
  • 54
  • 49
  • 49
  • 46
  • 44
  • 40
  • 40
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.

The analysis of nonlinear systems driven by almost periodic inputs

Van Zyl, Gideon Johannes 28 August 2008 (has links)
Not available / text

The analysis of nonlinear systems driven by almost periodic inputs /

Van Zyl, Gideon Johannes. January 2003 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2003. / Vita. Includes bibliographical references (leaves 177-180). Also available in an electronic version.

The analysis of nonlinear systems driven by almost periodic inputs

Van Zyl, Gideon Johannes. January 2003 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2003. / Vita. Includes bibliographical references. Available also from UMI Company.

Nonlinear systems with Gaussian inputs

Chesler, David A. January 1960 (has links)
Thesis--Massachusetts Institute of Technology. / Includes bibliography.

Identification of the nonlinear internal variable model parameters /

Litwhiler, Dale H. January 2000 (has links)
Thesis (Ph. D.)--Lehigh University, 2000. / Includes vita. Includes bibliographical references (leaf 82).

Analytical study of a control algorithm based on emotional processing

Chandra, Manik 25 April 2007 (has links)
This work presents a control algorithm developed from the mammalian emotional processing network. Emotions are processed by the limbic system in the mammalian brain. This system consists of several components that carry out different tasks. The system level understanding of the limbic system has been previously captured in a discrete event computational model. This computational model was modified suitably to be used as a feedback mechanism to regulate the output of a continuous-time first order plant. An extension to a class of nonlinear plants is also discussed. The combined system of the modified model and the linear plant are represented as a set of bilinear differential equations valid in a half space of the 3-dimensional real space. The bounding plane of this half space is the zero level of the square of the plant output. This system of equations possesses a continuous set of equilibrium points which lies on the bounding plane of the half space. The occurrence of a connected equilibrium set is uncommon in control engineering, and to prove stability for such cases one needs an extended Lyapunov-like theorem, namely LaSalle's Invariance Principle. In the process of using this Principle, it is shown that this set of equations possesses a first integral as well. A first integral is identified using the compatibility method, and this first integral is utilized to prove asymptotic stability for a region of the connect equilibrium set.

Dissipative Decomposition and Feedback Stabilization of Nonlinear Control Systems

Hudon, Nicolas 17 June 2010 (has links)
This dissertation considers the problem of approximate dissipative potentials construction and their use in smooth feedback stabilization of nonlinear control systems. For mechanical systems, dissipative potentials, usually a generalized Hamiltonian function, can be derived from physical intuition. When a dissipative Hamiltonian is not available, one can rely on dissipative Hamiltonian realization techniques, as proposed recently by Cheng and coworkers. Extensive results are available in the literature for (robust) stabilization based on the obtained potential. For systems of interest in chemical engineering, especially systems with mass action kinetics, energy is often ill-defined. Moreover, realization techniques are difficult to apply, due to the nonlinearities associated with the reaction terms. Approximate dissipative realization techniques have been considered by many researchers for analysis and feedback design of controllers in the context of chemical processes. The objective of this thesis is to study the construction of local dissipative potentials and their application to solve stabilization problems. The present work employs the geometric stabilization approach proposed by Jurdjevic and Quinn, refined by Faubourg and Pomet, and by Malisoff and Mazenc, for the design of stabilizing feedback laws. This thesis seeks to extend and apply the Jurdjevic--Quinn stabilization method to nonlinear stabilization problems, assuming no a priori knowledge of a Lyapunov function. A homotopy-based local decomposition method is first employed to study the dissipative Hamiltonian realization problem, leading to the construction of locally defined dissipative potentials. If the obtained potential satisfies locally the weak Jurdjevic--Quinn conditions, it is then shown how to construct feedback controllers using that potential, and under what conditions a Lyapunov function can be constructed locally for time-independent control affine systems. The proposed technique is then used for the construction of state feedback regulators and for the stabilization of periodic orbits based on a construction proposed by Bacciotti and Mazzi. In the last chapter of the thesis, stabilization of time-dependent control affine systems is considered, and the main result is used for the stabilization of periodic solutions using asymptotic feedback tracking. Low-dimensional examples are used throughout the thesis to illustrate the proposed techniques and results. / Thesis (Ph.D, Chemical Engineering) -- Queen's University, 2010-06-17 10:13:42.201

Neural network identification and control of electrical power steering systems

Ouyang, Xiaohong January 2000 (has links)
No description available.

Complexity in the development process

Rihani, Samir January 1999 (has links)
No description available.

Output control of nonlinear systems : a formulation based on state trajectory learning

Maqueira, Benigno 05 1900 (has links)
No description available.

Page generated in 0.0277 seconds