• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 2
  • 2
  • 1
  • Tagged with
  • 23
  • 23
  • 12
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anoxic Biodegradation of Naphthenic Acid Using Nitrite as an Electron Acceptor

2014 October 1900 (has links)
Extraction of bitumen from oil sands by surface mining and alkaline hot water process has generated large amount of oil sand process water (OSPW) which are contaminated by naphthenic acids (NAs). Due to the toxic and harmful nature of NAs, OSPW have been stored on-site in extremely large tailing ponds. With the understanding that the OSPW must be treated before their release into the natural water bodies and the need for reuse of the water, there is an urgent need in finding ways to treat these OSPWs effectively and economically. Numerous works on different treatment methods including photocatalysis, ozonation, adsorption, phytoremediation, simulated wetlands and bioremediation have been conducted and bioremediation has been proved as one of the most feasible ways among these methods. Research works on biodegradation of NAs, both aerobically and anoxically, have been conducted intensively in our research group in the past several years. Using surrogate NAs, specially trans-4-methyl-1-cyclohexane carboxylic acid (trans-4MCHCA), aerobic (Paslawski et al., 2009a,b,c, Huang et al., 2012; D’Souza et al., 2013) and anoxic (Gunawan et al., 2014) biodegradations of NA have been studied in batch, CSTR, biofilm system and circulating packed-bed bioreactor. Effects of naphthenic acid concentration, temperature, and naphthenic acid loading rate on the biodegradation process have been investigated. The results of the anoxic biodegradation of trans-4MCHCA in the presence of nitrate as an electron acceptor revealed that its performance was similar or better than the aerobic biodegradation. The results of that study also indicated the production of nitrite during the denitrification of nitrate and its subsequent consumption as part of biodegradation process. Given the importance of denitritation (nitrite reduction) as an essential step in anoxic biodegradation in the presence of nitrate, and the potential inhibitory effect of nitrite, the current research was conducted with the aim of investigating the performance of the anoxic biodegradation of trans-4MCHCA in the presence of nitrite as an electron acceptor, using batch, CSTR and biofilm reactors. The results of batch studies showed that nitrite at concentration up to 690 mg L-1 did not have a marked inhibitory effect but concentrations above 920 mg L-1 imposed a strong inhibitory effect. The optimum temperature was found to be in the range 24 C to 30°C. Continuous anoxic biodegradation of trans-4MCHCA with nitrite in CSTR achieved the maximum trans-4MCHCA biodegradation rate of 14.4 mg L-1 h-1 at a trans-4MCHCA loading rate of 22.9 mg L-1 h-1, which was about seven fold lower than the maximum trans-4MCHCA biodegradation rate observed with nitrate as an electron acceptor (105.4 mg L-1 h-1; Gunawan 2013). Both the trans-4MCHCA and nitrite degradation rates decreased with further increase of trans-4MCHCA loading rate. Using the experimental data the biokinetic coefficients Y (biomass yield), Ke (endogenous rate constant), μm (maximum specific growth rate) and Ks (saturation constant) were determined as 0.3 mg cell mg substrate-1, ~0 h-1, 0.4 h-1 and 20.9 mg substrate L-1, respectively. Similar pattern was observed in the biofilm system whereby the maximum trans-4MCHCA biodegradation rate was 82.2 mg L-1 h-1 at a trans-4MCHCA loading rate of 171.8 mg L-1 h-1, was about five folder lower than the maximum trans-4MCHCA biodegradation rate observed when nitrate was used as an electron acceptor (435.8 mg L-1 h-1; Gunawan 2013). The findings of current study suggested that the anoxic NA biodegradation in the presence of nitrite occurred at rates which were lower than those observed in the presence of nitrate, as well as those obtained under aerobic conditions with oxygen as the electron acceptor.
2

Ozonation and biodegradation of oil sands process water

Wang, Nan Unknown Date
No description available.
3

Ozonation and biodegradation of oil sands process water

Wang, Nan 06 1900 (has links)
To ensure oil sands process water (OSPW) is suitable for discharge into the environment, advanced water treatment technologies are required. In this study, integrated ozonation-biodegradation was investigated as a potential treatment option for OSPW. The treatment efficiency was evaluated in terms of naphthenic acid (NA) degradation, chemical oxygen demand (COD), carbonaceous Biological oxygen demand (CBOD), and acute toxicity reduction. Degradation of NAs of more than 99% was achieved using a semi-batch ozonation system at a utilized ozone dose of 80 mg/L combined with subsequent biodegradation. The results also show that ozone decreased the amount of COD while increasing the biodegradability of COD. It was noted that the carbon number and number of NA rings influenced the level of NA oxidation. With a utilized ozone dose of approximately 100 mg/L, the ozonated and biodegraded treated OSPW showed no toxic effect towards bacterium Vibrio fischeri. The results of this study indicate that integrated ozonation-biodegradation is a promising treatment technology for OSPW. / Environmental Engineering
4

Kinetics of liquid-solid reactions in naphthenic acid conversion and kraft pulping

Yang, Ling 11 1900 (has links)
Two liquid-solid reactions, in which the morphology of the solid changes as the reactions proceeds, were examined. One is the NA conversion in oil by decarboxylation on metal oxides and carbonates, and the other is the Kraft pulping in which lignin removal by delignification reaction. In the study of the NA conversion, CaO was chosen as the catalyst for the kinetic study from the tested catalysts based on NA conversion. Two reaction mixtures, carrier oil plus commercial naphthenic acids and heavy vacuum gas oil (HVGO) from Athabasca bitumen, were applied in the kinetic study. The influence of TAN, temperature, and catalyst loading on the NA conversion and decarboxylation were studied systematically. The results showed that the removal rate of TAN and the decarboxylation of NA were both independent of the concentration of NA over the range studied, and significantly dependent on reaction temperature. The data from analyzing the spent catalyst demonstrated that calcium naphthenate was an intermediate of the decarboxylation reaction of NA, and the decomposition of calcium naphthenate was a rate-determining step. In the study on the delignification of the Kraft pulping, a new mechanism was proposed for the heterogeneous delignification reaction during the Kraft pulping process. In particular, the chemical reaction mechanism took into account the heterogeneous nature of Kraft pulping. Lignin reacted in parallel with sodium hydroxide and sodium sulfide. The mechanism consists of three key kinetic steps: (1) adsorption of hydroxide and hydrosulfide ions on lignin; (2) surface reaction on the solid surface to produce degraded lignin products; and (3) desorption of degradation products from the solid surface. The most important step for the delignification process is the surface reaction, rather than the reactions occurring in the liquid phase. A kinetic model has, thus, been developed based on the proposed mechanism. The derived kinetic model showed that the mechanism could be employed to predict the pulping behavior under a variety of conditions with good accuracy. / Chemical Engineering
5

Kinetics of liquid-solid reactions in naphthenic acid conversion and kraft pulping

Yang, Ling Unknown Date
No description available.
6

Formation of Sulfide Scales and Their Role in Naphthenic Acid Corrosion of Steels

Kanukuntla, Vijaya 25 April 2008 (has links)
No description available.
7

Integrated Solid Phase, Aqueous Phase and Numerical Investigation of Plume Geochemistry at an Oil Sand Mining Facility

Oiffer, Alexander January 2006 (has links)
A plume of process-affected groundwater was identified in a shallow sand aquifer adjacent to a tailings impoundment at Syncrude Canada Ltd. Quantitative and qualitative Naphthenic Acid (NA) analyses were performed on groundwater samples to investigate NA fate and transport properties in the subsurface. Analysis of dissolved organic and inorganic components was undertaken to identify, quantify and assess the mobility of other dissolved components of environmental significance. NAs at concentrations up to 87 mg/L were found to represent the major contributor to aquatic toxicity. Attenuation of NAs by biodegradation is not observed based on screening techniques developed to date. Retardation of NAs observed at the field scale, is consistent with weak sorption observed in the laboratory by other authors. Concentrations of ammonium approached 4 mg/L in the plume, however mobility is limited by cation exchange. Aromatics and trace metals are present in low quantities (i. e. <10 ??g/L) and are only detected in groundwater immediately adjacent to the toe of the tailings impoundment. Cl and Na are found at concentrations of up 282 and 579 mg/L respectively. Dissolved oxygen is typically < 1 mg/L within the plume, while redox indicators Mn(II), Fe(II) and methane are detected between <0. 1 - 2. 6, 0. 2 - 3. 5 and <0. 1 - 2. 1 mg/L respectively within the plume. Solid phase geochemistry, determined through solid phase extractions, was coupled with aqueous geochemistry and reactive transport modeling to identify the dominant geochemical processes occurring within the plume. Based on scenarios evaluated using reactive transport modeling, the most likely origin for the presently observed, weakly reducing conditions in the plume appears to be the presence of a small amount of disssolved, degradable organic carbon. The dominant terminal electron acceptors appear to be Fe(III) and Mn(III/IV) in the plume core and dissolved oxygen at the plume fringe. Dissolved Fe and Mn are observed to enter the domain at the upgradient boundary at maximal concentrations of 4. 2 and 0. 7 mg/L respectively. Trace metal geochemistry of the aquifer material was also assessed using solid phase extractions. The potential for trace metal release via reductive dissolution of the native geologic material is considered minimal in this case, based on the weakly reducing nature of the plume and a lack of excessive trace metal content in the aquifer material.
8

Identification of Oil Sands Naphthenic Acid Structures and Their Associated Toxicity to Pimephales promelas and Oryzias latipes

Bauer, Anthony E January 2013 (has links)
The oil sands, located in north-eastern Alberta, are one of the largest deposits of oil worldwide. Because the Alberta Environmental Protection and Enhancement Act prohibits the release of oil sands process-affected material into the environment, industry is storing vast quantities of tailings on mine lease sites. The oil sands industry is currently accumulating tailings waste at a rate of >105 m3/day, for which reclamation strategies are being investigated. Naphthenic acids (NAs) have been identified as the most toxic component of oil sands tailings as they are considered acutely toxic to a variety of biota, and are therefore a target contaminant for tailings pond reclamation strategies. Current literature based on Microtox® assays (marine bacteria Vibrio fischeri) suggests that lower molecular weight NAs are more toxic than higher molecular weight NAs. The following thesis involves the utilization of NA fractions and their relative toxicities to determine if NA toxicity is related to NA molecular weight. A previous study generated an oil sands-derived naphthenic acid extract (NAE), which was fractionated by distillation at stepped temperatures, yielding five fractions with increasing median molecular weights (Daltons). In the present study, the same extract and five fractions were utilized. To expand on the earlier characterization which involved a low resolution electrospray ionization mass spectrometry (ESI-MS), the whole extract and five fractions were analysed using electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and synchronous fluorescence spectroscopy (SFS). Mean molecular weights were generated for each fraction, and an increase in molecular weight with increasing fraction number was confirmed. Respective mean Daltons and relative proportions for each fraction are as follows: 237 and 11.9 % (fraction 1), 240 and 32.3% (fraction 2), 257 and 33.4% (fraction 3), 308 and 16.8% (fraction 4), and 355 and 5.6% (fraction 5). When chemical analyses of fractions were compared, it was determined that structures contributing to increased molecular weight included increased cyclic structures (up to 7-ring structures), aromaticity (mono- and diaromatics), nitrogen, sulfur, and oxygen heteroatoms, and dihydroxy/dicarboxy compounds. In addition, characterization data suggested the presence of NAs exhibiting estrogenic structures. Following chemical characterization, NA fractions were subject to embryo/larval bioassays using two fish species: Oryzias latipes (Japanese medaka) and Pimephales promelas (fathead minnow). Endpoints evaluated were mortality, time to hatch, hatch length, and abnormalities. Results suggest that relative NA fraction toxicity is not related to molecular weight, as no trend relating mean Dalton weight to toxicity was observed for any endpoint in both species. Acute toxicity data indicated differences between fractions as high as 2-fold, although results were species-dependent. Fraction 1 displayed the lowest potency (highest LC50) for both Japanese medaka (0.291 mM) and fathead minnow (0.159 mM). Fractions 3 and 2 for Japanese medaka (0.149 and 0.157 mM, respectively), and fractions 5 and 2 for fathead minnow (0.061 and 0.080 mM, respectively) displayed the greatest potencies for mortality (lowest LC50). When fraction LC50s for Japanese medaka were compared to the whole NAE (0.143 mM), the mid molecular weight fractions (fractions 2 and 3) appeared most similar to the whole NA. . In terms of relative toxicity and proportion, constituents in the mid molecular range fractions (2 and 3) likely represent greater risk compared to other fractions, and further chemical and toxicological characterization of constituents within these fractions is warranted particularly for long-chained, monocarboxylic acids, with low aromaticity. Japanese medaka and fathead minnow varied in their sensitivity and their relative response to different fractions. In general, fathead minnow were more sensitive than Japanese medaka based on lower estimates of LC50 and threshold (growth) values in addition to the presence of developmental abnormalities (predominately yolk sac edema) associated with a few of the fractions. Compared to differences in toxicity between fractions for a given species (>2-fold for fathead minnow), there was more variability between species for a given fraction (> 3-fold for fraction 5). Also, the relative toxicity of fractions as indicated in the present study is contrary to the results generated using Vibrio fischeri for the same fractions. Thus, there is a need for multi- endpoint and species toxicity evaluations to assess the efficacy of remediation and reclamation options for reducing toxicity of oil sands tailings.
9

Integrated Solid Phase, Aqueous Phase and Numerical Investigation of Plume Geochemistry at an Oil Sand Mining Facility

Oiffer, Alexander January 2006 (has links)
A plume of process-affected groundwater was identified in a shallow sand aquifer adjacent to a tailings impoundment at Syncrude Canada Ltd. Quantitative and qualitative Naphthenic Acid (NA) analyses were performed on groundwater samples to investigate NA fate and transport properties in the subsurface. Analysis of dissolved organic and inorganic components was undertaken to identify, quantify and assess the mobility of other dissolved components of environmental significance. NAs at concentrations up to 87 mg/L were found to represent the major contributor to aquatic toxicity. Attenuation of NAs by biodegradation is not observed based on screening techniques developed to date. Retardation of NAs observed at the field scale, is consistent with weak sorption observed in the laboratory by other authors. Concentrations of ammonium approached 4 mg/L in the plume, however mobility is limited by cation exchange. Aromatics and trace metals are present in low quantities (i. e. <10 µg/L) and are only detected in groundwater immediately adjacent to the toe of the tailings impoundment. Cl and Na are found at concentrations of up 282 and 579 mg/L respectively. Dissolved oxygen is typically < 1 mg/L within the plume, while redox indicators Mn(II), Fe(II) and methane are detected between <0. 1 - 2. 6, 0. 2 - 3. 5 and <0. 1 - 2. 1 mg/L respectively within the plume. Solid phase geochemistry, determined through solid phase extractions, was coupled with aqueous geochemistry and reactive transport modeling to identify the dominant geochemical processes occurring within the plume. Based on scenarios evaluated using reactive transport modeling, the most likely origin for the presently observed, weakly reducing conditions in the plume appears to be the presence of a small amount of disssolved, degradable organic carbon. The dominant terminal electron acceptors appear to be Fe(III) and Mn(III/IV) in the plume core and dissolved oxygen at the plume fringe. Dissolved Fe and Mn are observed to enter the domain at the upgradient boundary at maximal concentrations of 4. 2 and 0. 7 mg/L respectively. Trace metal geochemistry of the aquifer material was also assessed using solid phase extractions. The potential for trace metal release via reductive dissolution of the native geologic material is considered minimal in this case, based on the weakly reducing nature of the plume and a lack of excessive trace metal content in the aquifer material.
10

Identification of Oil Sands Naphthenic Acid Structures and Their Associated Toxicity to Pimephales promelas and Oryzias latipes

Bauer, Anthony E January 2013 (has links)
The oil sands, located in north-eastern Alberta, are one of the largest deposits of oil worldwide. Because the Alberta Environmental Protection and Enhancement Act prohibits the release of oil sands process-affected material into the environment, industry is storing vast quantities of tailings on mine lease sites. The oil sands industry is currently accumulating tailings waste at a rate of >105 m3/day, for which reclamation strategies are being investigated. Naphthenic acids (NAs) have been identified as the most toxic component of oil sands tailings as they are considered acutely toxic to a variety of biota, and are therefore a target contaminant for tailings pond reclamation strategies. Current literature based on Microtox® assays (marine bacteria Vibrio fischeri) suggests that lower molecular weight NAs are more toxic than higher molecular weight NAs. The following thesis involves the utilization of NA fractions and their relative toxicities to determine if NA toxicity is related to NA molecular weight. A previous study generated an oil sands-derived naphthenic acid extract (NAE), which was fractionated by distillation at stepped temperatures, yielding five fractions with increasing median molecular weights (Daltons). In the present study, the same extract and five fractions were utilized. To expand on the earlier characterization which involved a low resolution electrospray ionization mass spectrometry (ESI-MS), the whole extract and five fractions were analysed using electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and synchronous fluorescence spectroscopy (SFS). Mean molecular weights were generated for each fraction, and an increase in molecular weight with increasing fraction number was confirmed. Respective mean Daltons and relative proportions for each fraction are as follows: 237 and 11.9 % (fraction 1), 240 and 32.3% (fraction 2), 257 and 33.4% (fraction 3), 308 and 16.8% (fraction 4), and 355 and 5.6% (fraction 5). When chemical analyses of fractions were compared, it was determined that structures contributing to increased molecular weight included increased cyclic structures (up to 7-ring structures), aromaticity (mono- and diaromatics), nitrogen, sulfur, and oxygen heteroatoms, and dihydroxy/dicarboxy compounds. In addition, characterization data suggested the presence of NAs exhibiting estrogenic structures. Following chemical characterization, NA fractions were subject to embryo/larval bioassays using two fish species: Oryzias latipes (Japanese medaka) and Pimephales promelas (fathead minnow). Endpoints evaluated were mortality, time to hatch, hatch length, and abnormalities. Results suggest that relative NA fraction toxicity is not related to molecular weight, as no trend relating mean Dalton weight to toxicity was observed for any endpoint in both species. Acute toxicity data indicated differences between fractions as high as 2-fold, although results were species-dependent. Fraction 1 displayed the lowest potency (highest LC50) for both Japanese medaka (0.291 mM) and fathead minnow (0.159 mM). Fractions 3 and 2 for Japanese medaka (0.149 and 0.157 mM, respectively), and fractions 5 and 2 for fathead minnow (0.061 and 0.080 mM, respectively) displayed the greatest potencies for mortality (lowest LC50). When fraction LC50s for Japanese medaka were compared to the whole NAE (0.143 mM), the mid molecular weight fractions (fractions 2 and 3) appeared most similar to the whole NA. . In terms of relative toxicity and proportion, constituents in the mid molecular range fractions (2 and 3) likely represent greater risk compared to other fractions, and further chemical and toxicological characterization of constituents within these fractions is warranted particularly for long-chained, monocarboxylic acids, with low aromaticity. Japanese medaka and fathead minnow varied in their sensitivity and their relative response to different fractions. In general, fathead minnow were more sensitive than Japanese medaka based on lower estimates of LC50 and threshold (growth) values in addition to the presence of developmental abnormalities (predominately yolk sac edema) associated with a few of the fractions. Compared to differences in toxicity between fractions for a given species (>2-fold for fathead minnow), there was more variability between species for a given fraction (> 3-fold for fraction 5). Also, the relative toxicity of fractions as indicated in the present study is contrary to the results generated using Vibrio fischeri for the same fractions. Thus, there is a need for multi- endpoint and species toxicity evaluations to assess the efficacy of remediation and reclamation options for reducing toxicity of oil sands tailings.

Page generated in 0.0736 seconds