Spelling suggestions: "subject:"nearfield microscopy"" "subject:"heartfield microscopy""
51 |
Femtosekunden Nahfeldspektroskopie an einzelnen HalbleiterquantenpunktenGünther, Tobias 22 May 2003 (has links)
In dieser Arbeit werden erstmals die nichtlinearen optischen Eigenschaften einzelner Halbleiterquantenpunkte mit Femtosekunden-Zeitauflösung untersucht und dargestellt. Insbesondere die Besetzungs- und Polarisationsdynamik eines einzelnen Halbleiterquantenpunkts wird diskutiert. Zur Durchführung der Experimente wird eine neuartige Messmethode entwickelt und eingesetzt: die Femtosekunden-Nahfeldspektroskopie. Die Kombination aus fs-Anrege-Abtast-Spektroskopie und optischer Nahfeldspektroskopie ermöglicht es, die nichtlinearen optischen Eigenschaften eines einzelnen Quantenpunkts mit hoher räumlicher, temporaler und spektraler Auflösung bei Temperaturen von 10 K bis 300 K zu untersuchen. Das zu diesem Zweck weiter entwickelte optische Nahfeldmikroskop bietet eine hohe räumliche Auflösung von bis zu 150 nm. Die Einführung einer neuartigen optischen Abstandsregelkontrolle sichert identische experimentelle Bedingungen über zahlreiche Stunden, ohne daß mechanische Wechselwirkungen zwischen den untersuchten Strukturen und dem apparativen Aufbau die Ergebnisse negativ beeinflussen. Durch die Kombination dieses Nahfeldmikroskops mit einem klassischen fs-Anrege-Abtast-Aufbau können die nichtlineare optische Eigenschaften einzelner Quantenpunkte mit einer Zeitauflösung von bis zu 150 fs untersucht werden. Zur Charakterisierung der Mehrfachquantenfilmprobe werden die linearen optischen Eigenschaften einzelner Interface Quantenpunkte mit Hilfe der stationären Methoden der Photolumineszenzspektroskopie und Photolumineszenz-Autokorrelationsspektroskopie untersucht und analysiert. Dadurch bietet sich die Möglichkeit der gezielten Untersuchung der räumlichen Statistik lokalisierter Zustände. Einblick in die räumliche Unordnung des zugrundeliegenden Potentialverlaufs kann gewonnen werden. In PL-Emission wird der Übergang von homogen verbreiterten Emissionslinien dicker Quantenfilme in ein inhomogen verbreitertes Emissionsspektrum bei gleichzeitiger Beobachtung spektral scharfer Emissionslinien einzelner lokalisierter Exzitonenresonanzen mit Abnahme der Filmdicke beobachtet. In PL-Autokorrelationsexperimenten wird ein zweites ausgeprägtes Korrelationsmaximum beobachtet. Dieses wird einem angeregten lokalisierten und optisch aktiven Zustand zugeschrieben. Die beobachtete Energiedifferenz zwischen Exzitonengrundzustand und dem beobachteten angeregten Zustand ermöglicht eine Abschätzung des Dipolmoment zu 40-50D und der Ausdehnung von Quantenpunkte von ca. 50nm. Zeitaufgelöste Untersuchungen an interface Quantenpunkten werden mit einer spektralen Auflösung von 60 µeV in Reflexionsgeometrie durchgeführt. Diese gestatten zum einen die Bestimmung der Lebensdauer und Dipolmomente lokalisierter Exzitonenzustände. Zum anderen ist eine nahezu vollständige Rekonstruktion der Polarisationsdynamik nach optischer Anregung möglich. Grossen Einfluss auf die spektrale Form der detektierten Reflektivitätsänderung besitzt die Tiefe unter der ein Quantenpunkt unter der Oberfläche vergraben ist. Diese Tiefenabhängigkeit wird in dieser Arbeit genauer untersucht und analysiert. Weiterhin wird erstmals die Polarisationsdynamik in einem einzelnen Quantenpunkt mit fs-Zeitauflösung untersucht und analysiert. Wird die durch den Abtastimpuls getriebene Polarisation nicht durch Wechselwirkung mit einem zweiten Impuls gestört, wird eine exponentielle zeitliche Abnahme der Polarisation mit der durch die homogenen Linienbreite bestimmten Dephasierungszeit ermittelt. Vielteilchenwechselwirkung nach nichtresonanter Anregung mit einem Anregeimpuls führt zur Änderung der Polarisationsdynamik lokalisierter Zustände und zur Beobachtung nichtverschwindender Reflektivitätsänderungen zu negativen Verzögerungszeiten. Als dominanter Mechanismus der in den zeitaufgelösten Experimenten vorherrschenden Vielteilchenwechselwirkung wird ein anregungsinduziertes Dephasieren nachgewiesen. / In this thesis the first study of nonlinear optical properties of single Quantum Dots with femtosecond time resolution is presented. Especially the population and polarization dynamics in a single semiconductor quantum dot will be discussed. To achieve this goal a new experimental technology is developed, giving the possibility to investigate the temporal dynamics of a single quantum dot within a temperature range between 10 and 300 K. Hereby the combination of a standard pump-probe setup with a near-field microscope for variable temperatures allows highest temporal, spectral and spatial resolution of up to 100 fs, 60 ueV and 150 nm respectively. The introduction of a new optical distance control enables the investigation of nonlinear optical properties of a single quantum dot in reflection geometry without any restrictions due to masking or stress effects. In first experiments the linear optical properties of single interface Quantum Dots in the multiple quantum well structure is characterized and analyzed via PL- and PL-autocorrelation spectroscopy. Knowledge of the spatial statistics of localized states can be gained. Insight into correlation of the underlying disorder potential is achieved. By investigating different quantum wells the crossover from a homogeneous broadened emission spectra of thick quantum films to an inhomogeneous broadened emission spectra is observed accompanied by the occurrence of sharp emission peaks from localized excitons. In PL-Autocorrelation experiments a second pronounced correlation maximum is observed. This correlation maximum can be explained by a localized excited and optical active resonance in a single quantum dot. The energy difference between the localized ground state and the first excited state of about 3 meV allows a rough estimate of underlying dipole moments to 40-50 D and the extent of isolated quantum dots to 50 nm. Time resolved experiments on interface quantum dots are performed with a spectral resolution of 60 µeV in reflection geometry, allowing on one hand the determination of population life times and dipole moments of localized exciton states. On the other hand a nearly complete reconstruction of the polarization dynamics is possible. Large influence on spectral shape of the reflectivity change is given by the distance between interface quantum dots and the sample surface. This burying depth dependence will discussed and analyzed in detail within this thesis. Moreover polarization dynamics in a single quantum dot is investigated with fs-resolution. If the polarization driven by the probe pulse is not disturbed by a second light pulse, an exponential decay of the polarization amplitude with an decay time determined by the homogeneous line width is observed. Many body interaction after excitation by a non-resonant pump-pulse causes changes in the polarization dynamics of localized states at negative delay times. As prominent mechanism of many-body interactions governing the experiments an excitation induced dephasing will be determined.
|
52 |
Nanoscale light-matter interactions in the near-field of high-Q microresonatorsEftekhar, Ali Asghar 10 November 2011 (has links)
The light-matter interaction in the near-field of high-Q resonators in SOI and SiN platforms is studied. The interactions of high-Q traveling-wave resonators with both resonant and non-resonant nanoparticles are studied and different applications based on this enhanced interactions in near-field such as high-resolution imaging of mode profile of high-Q resonators, label-free sensing, optical trapping, and SERS sensing are investigated. A near-field imaging system for the investigation of the near-field phenomena in the near-field of high-Q resonators is realized. A new technique for high-resolution imaging of the optical modes in high-Q resonators based on the near-field perturbation is developed that enables to achieve a very high resolution (< 10 nm) near-field image. The prospect of the high Q resonators on SOI platform for highly multiplexed label-free sensing and the effect of different phenomena such as the analyte drift and diffusion and the binding kinetics are studied. Also, the possibility of enhancing nanoparticle binding to the sensor surface using optical trapping is investigated and the dynamic of a nanoparticle in the high-Q resonator optical trap is studied. Furthermore, the interaction between a resonant nanoparticle with a high-Q microdisk resonator and its application for SERS sensing is studied. A model for interaction of resonant nanoparticles with high-Q resonators is developed and the optimal parameters for the design of coupled microdisk resonator and a plasmonic nanoparticle are calculated. The possible of resonant plasmonic nanoparticle trapping and alignment in an SiN microdisk resonator optical trap is also shown.
|
53 |
THz Near-Field Microscopy and Spectroscopy / THz Nahfeld Mikroskopie und Spektroskopievon Ribbeck, Hans-Georg 02 April 2015 (has links) (PDF)
Imaging with THz radiation at nanoscale resolution is highly desirable for specific material investigations that cannot be obtained in other parts of the electromagnetic spectrum. Nevertheless, classical free-space focusing of THz waves is limited to a >100 μm spatial resolution, due to the diffraction limit. However, the scattering- type scanning near-field optical microscopy (s-SNOM) promises to break this diffraction barrier. In this work, the realization of s-SNOM and spectroscopy for the THz spectral region from 30–300 μm (1–10 THz) is presented.
This has been accomplished by using two inherently different radiation sources at distinct experimental setups: A femtosecond laser driven photoconductive antenna, emitting pulsed broadband THz radiation from 0.2–2 THz and a free-electron laser (FEL) as narrow-band high-intensity source, tunable from 1.3–10 THz.
With the photoconductive antenna system, it was demonstrated for the first time that near-field spectroscopy using broadband THz-pulses, is achievable. Hereby, Terahertz time-domain spectroscopy with a mechanical delay stage (THz-TDS) was realized to obtain spectroscopic s-SNOM information, with an additional asynchronous optical sampling (ASOPS) option for rapid far-field measurements. The near-field spectral capabilities of the microscope are demonstrated with measurements on gold and on variably doped silicon samples. Here it was shown that the spectral response follows the theoretical prediction according to the Drude and the dipole model. While the broadband THz-TDS based s-SNOM in principle allows for the parallel recording of the full spectral response, the weak average power of the THz source ultimately limits the technique to optically investigate selected sample locations only.
Therefore, for true THz near-field imaging, a FEL as a high-intensity narrow- band but highly-tunable THz source in combination with the s-SNOM technique, has been explored. Here, the characteristic near-field signatures at wavelengths from 35–230 μm are shown. Moreover, the realization of material sensitive THz near-field imaging is demonstrated by optically resolving, a structured gold rod with a reso- lution of up to 60 nm at 98 μm wavelength. Not only can the gold be distinguished from the silica substrate but moreover parts of the structure have been identified to be residual resin from the fabrication process. Furthermore, in order to explore the resolution capabilities of the technique, the near-fields of patterned gold nano- structures (Fischer pattern) were imaged with a 50 nm resolution at wavelengths up to 230 μm (1.2 THz). Finally, the imaging of a topography-independent optical material contrast of embedded organic structures, at exemplary 150 μm wavelength is shown, thereby demonstrating that the recorded near-field signal alone allows us to identify materials on the nanometer scale.
The ability to measure spectroscopic images by THz-s-SNOM, will be of benefit to fundamental research into nanoscale composites, nano-structured conductivity phenomena and metamaterials, and furthermore will enable applications in the chemical and electronics industries. / Die Bildgebung mit THz Strahlung im Nanobereich ist höchst wünschenswert für genaue Materialuntersuchungen, welche nicht in anderen Spektralbereichen durchgeführt werden kann. Aufgrund des Beugungslimits ist kann jedoch mit klassischen Methoden keine bessere Auflösung als etwa 100 μm für THz-Strahlung erreicht werden. Die Methode der Streulicht-Nahfeldmikroskopie (s-SNOM) verspricht jedoch dieses Beugungslimit zu durchbrechen.
In der vorliegenden Arbeit wird die Realisierung der Nahfeld-Mikroskopie und Spektroskopie im THz-Spektralbereich von 30–1500 μm (0.2–10 THz) präsentiert. Dies wurde mittels zweier grundsätzlich unterschiedlichen Strahlungsquellen an separaten Experimentaufbauten erreicht: Einer photoleitenden Antenne welche gepulste breitbandige THz-Strahlung von 0.2–2 THz emittiert, sowie einem Freie- Elektronen Laser (FEL) als schmalbandige hochleistungs Quelle, durchstimmbar von 1.3–10 THz.
Mit dem photoleitenden Antennensystem konnte zum ersten mal demonstriert werden, dass mit breitbandigen THz-Pulsen Nahfeldspektroskopie möglich ist. Dazu wurde die übliche THz-Time-Domain-Spektroskopie (THz-TDS) zur Erhaltung der spektroskopischen s-SNOM Informationen, sowie asynchrones optisches Abtasten (ASOPS) für schnelle Fernfeld Spektroskopie eingesetzt. Die nahfeldspektroskopischen Fähigkeiten des Mikroskops wurden anhand von Messungen an Gold sowie unterschiedlich dotierten Siliziumproben demonstriert. Dabei konnte gezeigt werden, dass die spektrale Antwort den theoretischen Voraussagen des Drude- sowie Dipol Modells folgt. Während das breitband THz-TDS basierte s-SNOM spektroskopische Nahfelduntersuchungen zulässt, limitiert jedoch die schwache Ausgangsleistung der THz-quelle diese Technik insofern, dass praktisch nur Punktspektroskopie an ausgesuchten Probenstellen möglich ist.
Für echte nanoskopische Nahfeldbildgebung wurde daher ein FEL als durchstimmbare hochleistungs THz-Quelle in Kombination mit der s-SNOM-Technik erforscht. Hierzu wurden die charakteristischen Nahfeld-Signaturen bei Wellenlängen von 35–230 μm untersucht, gefolgt von die Verwirklichung materialsensitiver THz Nahfeldbildgebung gezeigt an Goldstreifen mit bis zu 60 nm Auflösung. Dabei kann nicht nur das Gold von dem Glassubstrat unterschieden werden, sondern auch Ablagerungen als Überreste des Fabrikationsprozesses identifiziert werden. Um die Grenzen der Auflösungsmöglichkeiten dieser Technik zu sondieren, wurden weiterhin die Nahfelder von gemusterten Gold-Nanostrukturen (Fischer-Pattern) bei Wellenlängen bis zu 230 μm (1.2 THz) abgebildet. Hierbei wurde eine Auflösung von 50 nm festgestellt. Schliesslich konnte der topographieunabhängige Materialkontrast von eingebetteten organischen Strukturen, exemplarisch bei 150 μm Wellenlänge, gezeigt werden.
Die Fähigkeit, spektroskopische Aufnahmen mittels der THZ-s-SNOM Technik zu erzeugen, wird der Grundlagenforschung und in der Nanotechnologie zu Gute kommen, und weiterhin Anwendungen in der Chemischen- und Halbleiterindustrie ermöglichen.
|
54 |
Desenvolvimento de um microscópio óptico e magnetoóptico de varredura em campo-próximo / Development of a Magneto-optical Scanning Near-field Optical Microscope (MO-SNOM)Jeroen Schoenmaker 26 April 2005 (has links)
Para o desenvolvimento da nanociência atual há forte demanda por equipamentos capazes de caracterizar sistemas em escalas da ordem nanométrica. Este contexto impulsionou o desenvolvimento de microscópios ópticos de varredura em campopróximo (Scanning Near-field Optical Microscope SNOM). Diferentemente da microscopia óptica tradicional, os SNOMs detectam a radiação eletromagnética evanescente e, conseqüentemente, a resolução não é limitada pelo critério de Rayleigh. No Laboratório de Materiais Magnéticos IFUSP desenvolvemos um SNOM sensível a efeitos Kerr magnetoópticos (MO-SNOM). Dessa maneira, associamos a alta resolução da técnica à alta sensibilidade dos efeitos magnetoópticos. Trata-se se uma área relativamente pouco explorada e carente de resultados sistemáticos na literatura. Utilizando o MO-SNOM, caracterizamos partículas microestruturadas de Co70.4Fe4.6Si15B10 amorfo com dimensões de 16x16x0.08 microm3 e 4x4x0.08 microm3. Os resultados compreendem dezenas de imagens de susceptibilidade magnetoóptica diferencial com resolução melhor que 200 nm e curvas de histerese local. Em primeira análise, a demonstração de resultados sistemáticos ajuda a estabelecer a técnica. O comportamento magnético das partículas, estudadas sob várias condições de campo aplicado, se mostrou determinado basicamente pela anisotropia de forma. As curvas de histerese local mostraram comportamentos intrinsecamente locais e motivaram uma interessante discussão sobre os parâmetros de caracterização magnética convencionais. As medidas realizadas indicam que o efeito Kerr magnetoótico transversal em campopróximo é similar ao campo-distante. Os resultados são fortemente sustentados por medidas de microscopia magnetoóptica de campo-distante, simulações micromagnéticas e medidas de microscopia de força magnética. Medidas complementares revelam o potencial do MO-SNOM para caracterizações de objetos extensos quanto a potenciais de pinning. Além disso, medidas em filmes finos de NiFe/FeMn acoplados por exchange-bias evidenciam a alta sensibilidade do MO-SNOM, estimada de DM ~ 2 x 10-12 emu. / To support nanosciences evolution, there is a strong demand for developing new instrumentation devoted to nano-scale characterization. In this context, the development of the Scanning Near-field Optical Microscope (SNOM) took place. In contrast to traditional optical microscopes, SNOM deals with evanescent electromagnetic radiation and, consequently, the resolution is no longer limited by the Rayleigh criterion. At Laboratório de Materiais Magnéticos (LMM) IFUSP a SNOM devoted to magneto-optical Kerr effect measurements (MO-SNOM) has been developed. The MOSNOM associates the high resolution of the near-field technique to the high sensibility of the magneto-optical Kerr effect. Near-field magneto-optical microscopy is not yet wellestablished and there is a lack of systematic results in the literature. Using the MO-SNOM, amorphous Co70.4Fe4.6Si15B10 particles with 16x16x0.08 microm3 and 4x4x0.08 microm3 dimensions were studied. With resolution better than 200 nm, several magneto-optical differential susceptibility images and local hysteresis loops were obtained. The systematic results uphold the establishment of this new technique. Under the different applied field conditions, the magnetic behavior of the particles was found to be determined by shape anisotropy. Local hysteresis loops presented shapes intrinsic of local field induced process. The unusual hystesesis loops motivated interesting discussion about the conventional magnetic parameters. The MO-SNOM measurements indicate that the near-field transverse magneto-optical Kerr effect is similar to the far-field case. The results are highly supported by far-field magneto-optical microscopy, micromagnetic simulations and magnetic force microscopy measurements. Complementary measurements indicate the MO-SNOM potential to extensive magnetic surface characterization related to pinning potential distribution. Furthermore, measurements on the exchange-bias coupled NiFe/FeMn thin films make evident the MO-SNOM high sensitivity, estimated to be DeltaM ~ 2 x 10-12 emu.
|
55 |
Investigation of nanometer scale charge carrier density variations with scattering-type scanning near-field microscopy in the THz regimeKuschewski, Frederik 31 January 2020 (has links)
Near-field microscopy is a versatile technique for non-destructive detection of optical properties on the nanometer scale. Contrary to conventional microscopy techniques, the resolution in near-field microscopy is not restricted by the diffraction limit, but by the size of the probe only. Typically, wavelength-independent resolution in the range of few ten nanometers can be achieved. Many fundamental phenomena in solid states occur at such small length scales and can be probed by infrared and THz radiation. In the present work, nanoscale charge carrier distributions were investigated with near-field microscopy in classic semiconductors and state-of-the-art graphene field-effect transistors. A CO2 laser, the free-electron laser FELBE at the Helmholtz-Zentrum Dresden Rossendorf and a photoconductive antenna were applied as radiation sources for illumination of the samples.
In the theoretical part of the work, the band model for charge carriers in semiconductors is briefly explained to derive typical charge carrier densities of such materials. The influence of the charge carriers to the light-matter interaction is introduced via the Drude model and evaluated for both infrared and THz radiation. In field-effect transistors, charge carrier density waves can occur when strong AC fields are coupled into the device. The phenomena in such transistors are introduced as a more complex material system. To describe the near-field coupling of the samples to the nanoscopic probe, the dipole model is introduced and extended for periodic charge carrier density, as elicited by low repetition-rate excitation lasers. Consequently, sidebands occur as new frequencies in the signal spectrum, allowing for a more sensitive probing of such transient processes.
Experimental investigations of these sidebands were performed with a CO2 laser setup on a bulk germanium sample which was excited with femtosecond laser pulses. New frequencies up to the 8th sideband could be observed. The results show a characteristic near-field decay for all sidebands when the probe-sample distance is increased. A nanoscale material contrast in the sidebands signatures has been demonstrated via near-field scans on a gold / germanium heterostructure.
Near-field signatures of graphene-field effect transistors have been examined utilizing FELBE. The results match the predicted behavior of charge carriers in such a device and in particular represent the first direct observations of the plasma waves. In collaboration with the group of Prof. Dr. Hartmut G. Roskos (Goethe-Universität Frankfurt), the plasma wave velocity in the graphene field-effect transistor has been derived via fitting to the model for two datasets on different devices from independent fabrications. The obtained velocity is in good agreement with literature values. The results promise the application of field-effect transistors as THz detectors and emitters and may lead to faster communication technology.:1 Introduction
2 Fundamentals
2.1 Semiconductors
2.2 Plasma Waves in Graphene Field-Effect Transistors
2.3 Near-Field Microscopy
2.3.1 Aperture-SNOM
2.3.2 Scattering-SNOM
2.4 THz Optics
3 SNOM-Theory
3.1 Dipole Model
3.2 Detection and Demodulation
3.3 Pump-induced Sidebands in SNOM
3.4 Field Enhancement by Resonant Probes
4 Near-Field Microscope Setups
4.1 FELBE THz SNOM
4.2 Pump-modulated s-SNOM
4.3 THz Time-Domain-Spectroscopy SNOM
5 Sideband Results
5.1 Pump-induced Sidebands in Germanium
5.2 Fluence Dependence
5.3 Higher-order sidebands
5.4 Oscillation Amplitude
5.5 Technical Aspects of the Sideband Demodulation
6 Field-Effect Transistors
6.1 Device Design
6.2 Data Analysis
6.3 Near-Field Overview Scans
6.4 Plasma Wave Examination
6.5 Conclusion
7 Discussion and Outlook
A Appendix
A.1 Scanning Probe Microscopy
A.2 Atomic Force Microscope
List of Figures
Bibliography / Nahfeldmikroskopie ist eine vielseite Technik für das zerstörungsfreie Auslesen von optischen Eigenschaften auf der Nanoskala. Im Gegensatz zur konventionellen Mikroskopie ist die Auflösung nicht durch Beugungseffekte, sondern durch die Größe der genutzten Sonde begrenzt. Überlicherweise werden wellenlängenunabhängig Auflösungen von einigen zehn Nanometern erreicht. Viele fundamentale Prozesse in der Festkörperphysik treten auf Längenskalen dieser Größenordnung auf und können mit Infrarot- und THz-Strahlung untersucht werden. In dieser Arbeit wurden nanoskalige Ladungsträgerverteilungen mit Rasternahfeldmikroskopie untersucht, einerseits in klassischen Halbleitern, anderseits in state-of-the-art Graphen Feldeffekttransistoren. Zur Beleuchtung der Proben wurden ein CO2 Laser, der freie-Elektronen Laser FELBE am Helmholtz-Zentrum Dresden-Rossendorf und eine photoleitende Antenne verwendet.
Im theoretischen Teil der Arbeit wird das Bändermodell für Ladungsträger in Halbleitern erklärt, um daraus typische Ladungsträgerdichten in diesen Materialien abzuleiten. Der Einfluss der Ladungsträger auf die Interaktion mit Strahlung wird durch das Drude-Modell eingeführt und für Infrarot- und THz-Strahlung abgeschätzt. In Graphen Feldeffekttransistoren können Ladungsträgerdichtewellen auftreten, wenn starke Wechselfelder in das Bauelement eingekoppelt werden. Die Prozesse in solchen Transistoren werden als komplexeres Materialsystem eingeführt. Um die Nahfeldkopplung der Proben an die Sonde zu beschreiben, wird das Dipol-Modell eingeführt und für periodische Ladungsträgerdichten erweitert, wie sie bspw. durch Pumplaser mit niedrigen Repetitionsraten erzeugt werden können. In der Folge entstehen Seitenbänder als neue Frequenzen im Signalspektrum, welche eine sensitivere Messung solcher transienten Prozesse ermöglichen.
Experimentelle Untersuchungen des erweiterten Dipol-Modells wurden mit einem CO2 Laser Aufbau an einem Germaniumkristall durchgeführt, welcher mit Femtosekunden Laserpulsen angeregt wird. Neue Frequenzen im Spektrum konnten bis zu dem achten Seitenband beobachtet werden. Die Resultate zeigen den typischen Abfall des Nahfeldes, wenn der Abstand zwischen Sonde und Probe vergrößert wird. Ein Materialkontrast auf der Nanoskale im Seitenband-Signal konnte durch laterale Rasternahfeld-Scans auf einer Gold/Germanium Heterostruktur gezeigt werden.
Die Nahfeldsignaturen der Graphen Feldeffekttransistoren wurden mit FELBE untersucht. Die Resultate stimmen mit dem vorausgesagtem Verhalten der Ladungsträger in einem solchen Bauteil überein und sind die erste direkte Beobachtung solcher Plasmawellen. In Kooperation mit der Gruppe um Prof. Dr. Hartmut G. Roskos (Goethe-Universität Frankfurt) wurde die Geschwindigkeit der Plasmawelle durch Regression der Daten berechnet. Dabei wurden zwei Datensätzen an Bauteilen von unabhängigen Fabrikationsprozessen genutzt. Die berechnete Geschwindigkeit ist in guter Übereinstimmung mit Literaturwerten. Die Resultate verheißen die Anwendung von Feldeffekttransistoren als THz Sender und Detektoren und könnten zu schnellerer Kommunikationstechnologie führen.:1 Introduction
2 Fundamentals
2.1 Semiconductors
2.2 Plasma Waves in Graphene Field-Effect Transistors
2.3 Near-Field Microscopy
2.3.1 Aperture-SNOM
2.3.2 Scattering-SNOM
2.4 THz Optics
3 SNOM-Theory
3.1 Dipole Model
3.2 Detection and Demodulation
3.3 Pump-induced Sidebands in SNOM
3.4 Field Enhancement by Resonant Probes
4 Near-Field Microscope Setups
4.1 FELBE THz SNOM
4.2 Pump-modulated s-SNOM
4.3 THz Time-Domain-Spectroscopy SNOM
5 Sideband Results
5.1 Pump-induced Sidebands in Germanium
5.2 Fluence Dependence
5.3 Higher-order sidebands
5.4 Oscillation Amplitude
5.5 Technical Aspects of the Sideband Demodulation
6 Field-Effect Transistors
6.1 Device Design
6.2 Data Analysis
6.3 Near-Field Overview Scans
6.4 Plasma Wave Examination
6.5 Conclusion
7 Discussion and Outlook
A Appendix
A.1 Scanning Probe Microscopy
A.2 Atomic Force Microscope
List of Figures
Bibliography
|
56 |
Scattering Scanning Near-Field Optical Microscopy on Anisotropic Dielectrics / Aperturlose Nahfeldmikroskopie an anisotropen DielektrikaSchneider, Susanne Christine 17 October 2007 (has links) (PDF)
Near-field optical microscopy allows the nondestructive examination of surfaces with a spatial resolution far below the diffraction limit of Abbe. In fact, the resolution of this kind of microscope is not at all dependent on the wavelength, but is typically in the range of 10 to 100 nanometers. On this scale, many materials are anisotropic, even though they might appear isotropic on the macroscopic length scale. In the present work, the previously never studied interaction between a scattering-type near-field probe and an anisotropic sample is examined theoretically as well as experimentally. In the theoretical part of the work, the analytical dipole model, which is well known for isotropic samples, is extended to anisotropic samples. On isotropic samples one observes an optical contrast between different materials, whereas on anisotropic samples one expects an additional contrast between areas with different orientations of the same dielectric tensor. The calculations show that this anisotropy contrast is strong enough to be observed if the sample is excited close to a polariton resonance. The experimental setup allows the optical examination in the visible and in the infrared wavelength regimes. For the latter, a free-electron laser was used as a precisely tunable light source for resonant excitation. The basic atomic force microscope provides a unique combination of different scanning probe microscopy methods that are indispensable in order to avoid artifacts in the measurement of the near-field signal and the resulting anisotropy contrast. Basic studies of the anisotropy contrast were performed on the ferroelectric single crystals barium titanate and lithium niobate. On lithium niobate, we examined the spectral dependence of the near-field signal close to the phonon resonance of the sample as well as its dependence on the tip-sample distance, the polarization of the incident light, and the orientation of the sample. On barium titanate, analogous measurements were performed and, additionally, areas with different types of domains were imaged and the near-field optical contrast due to the anisotropy of the sample was directly measured. The experimental results of the work agree with the theoretical predictions. A near-field optical contrast due to the anisotropy of the sample can be measured and allows areas with different orientations of the dielectric tensor to be distinguished optically. The contrast results from variations of the dielectric tensor components both parallel and perpendicular to the sample surface. The presented method allows the optical examination of anisotropies of a sample with ultrahigh resolution, and promises applications in many fields of research, such as materials science, information technology, biology, and nanooptics. / Die optische Nahfeldmikroskopie ermöglicht die zerstörungsfreie optische Unter- suchung von Oberflächen mit einer räumlichen Auflösung weit unterhalb des klas- sischen Beugungslimits von Abbe. Die Auflösung dieser Art von Mikroskopie ist unabhängig von der verwendeten Wellenlänge und liegt typischerweise im Bereich von 10-100 Nanometern. Auf dieser Längenskala zeigen viele Materialien optisch anisotropes Verhalten, auch wenn sie makroskopisch isotrop erscheinen. In der vorliegenden Arbeit wird die bisher noch nicht bestimmte Wechselwirkung einer streuenden Nahfeldsonde mit einer anisotropen Probe sowohl theoretisch als auch experimentell untersucht. Im theoretischen Teil wird das für isotrope Proben bekannte analytische Dipol- modell auf anisotrope Materialien erweitert. Während fÄur isotrope Proben ein reiner Materialkontrast beobachtet wird, ist auf anisotropen Proben zusätzlich ein Kontrast zwischen Bereichen mit unterschiedlicher Orientierung des Dielektrizitätstensors zu erwarten. Die Berechnungen zeigen, dass dieser Anisotropiekontrast messbar ist, wenn die Probe nahe einer Polaritonresonanz angeregt wird. Der verwendete experimentelle Aufbau ermöglicht die optische Untersuchung von Materialien im sichtbaren sowie im infraroten Wellenlängenbereich, wobei zur re- sonanten Anregung ein Freie-Elektronen-Laser verwendet wurde. Das dem Nahfeld- mikroskop zugrunde liegende Rasterkraftmikroskop bietet eine einzigartige Kombi- nation verschiedener Rastersondenmikroskopie-Methoden und ermöglicht neben der Untersuchung von komplementären Probeneigenschaften auch die Unterdrückung von mechanisch und elektrisch induzierten Fehlkontrasten im optischen Signal. An den ferroelektrischen Einkristallen Lithiumniobat und Bariumtitanat wurde der anisotrope Nahfeldkontrast im infraroten WellenlÄangenbereich untersucht. An eindomÄanigem Lithiumniobat wurden das spektrale Verhalten des Nahfeldsignals sowie dessen charakteristische Abhängigkeit von Polarisation, Abstand und Proben- orientierung grundlegend untersucht. Auf Bariumtitanat, einem mehrdomänigen Kristall, wurden analoge Messungen durchgeführt und zusätzlich Gebiete mit ver- schiedenen Domänensorten abgebildet, wobei ein direkter nachfeldoptischer Kon- trast aufgrund der Anisotropie der Probe nachgewiesen werden konnte. Die experimentellen Ergebnisse dieser Arbeit stimmen mit den theoretischen Vorhersagen überein. Ein durch die optische Anisotropie der Probe induzierter Nahfeldkontrast ist messbar und erlaubt die optische Unterscheidung von Gebie- ten mit unterschiedlicher Orientierung des Dielektriziätstensors, wobei eine Än- derung desselben sowohl parallel als auch senkrecht zur Probenoberfläche messbar ist. Diese Methode erlaubt die hochauflösende optische Untersuchung von lokalen Anisotropien, was in zahlreichen Gebieten der Materialwissenschaft, Speichertech- nik, Biologie und Nanooptik von Interesse ist.
|
57 |
THz Near-Field Microscopy and Spectroscopyvon Ribbeck, Hans-Georg 31 March 2015 (has links)
Imaging with THz radiation at nanoscale resolution is highly desirable for specific material investigations that cannot be obtained in other parts of the electromagnetic spectrum. Nevertheless, classical free-space focusing of THz waves is limited to a >100 μm spatial resolution, due to the diffraction limit. However, the scattering- type scanning near-field optical microscopy (s-SNOM) promises to break this diffraction barrier. In this work, the realization of s-SNOM and spectroscopy for the THz spectral region from 30–300 μm (1–10 THz) is presented.
This has been accomplished by using two inherently different radiation sources at distinct experimental setups: A femtosecond laser driven photoconductive antenna, emitting pulsed broadband THz radiation from 0.2–2 THz and a free-electron laser (FEL) as narrow-band high-intensity source, tunable from 1.3–10 THz.
With the photoconductive antenna system, it was demonstrated for the first time that near-field spectroscopy using broadband THz-pulses, is achievable. Hereby, Terahertz time-domain spectroscopy with a mechanical delay stage (THz-TDS) was realized to obtain spectroscopic s-SNOM information, with an additional asynchronous optical sampling (ASOPS) option for rapid far-field measurements. The near-field spectral capabilities of the microscope are demonstrated with measurements on gold and on variably doped silicon samples. Here it was shown that the spectral response follows the theoretical prediction according to the Drude and the dipole model. While the broadband THz-TDS based s-SNOM in principle allows for the parallel recording of the full spectral response, the weak average power of the THz source ultimately limits the technique to optically investigate selected sample locations only.
Therefore, for true THz near-field imaging, a FEL as a high-intensity narrow- band but highly-tunable THz source in combination with the s-SNOM technique, has been explored. Here, the characteristic near-field signatures at wavelengths from 35–230 μm are shown. Moreover, the realization of material sensitive THz near-field imaging is demonstrated by optically resolving, a structured gold rod with a reso- lution of up to 60 nm at 98 μm wavelength. Not only can the gold be distinguished from the silica substrate but moreover parts of the structure have been identified to be residual resin from the fabrication process. Furthermore, in order to explore the resolution capabilities of the technique, the near-fields of patterned gold nano- structures (Fischer pattern) were imaged with a 50 nm resolution at wavelengths up to 230 μm (1.2 THz). Finally, the imaging of a topography-independent optical material contrast of embedded organic structures, at exemplary 150 μm wavelength is shown, thereby demonstrating that the recorded near-field signal alone allows us to identify materials on the nanometer scale.
The ability to measure spectroscopic images by THz-s-SNOM, will be of benefit to fundamental research into nanoscale composites, nano-structured conductivity phenomena and metamaterials, and furthermore will enable applications in the chemical and electronics industries. / Die Bildgebung mit THz Strahlung im Nanobereich ist höchst wünschenswert für genaue Materialuntersuchungen, welche nicht in anderen Spektralbereichen durchgeführt werden kann. Aufgrund des Beugungslimits ist kann jedoch mit klassischen Methoden keine bessere Auflösung als etwa 100 μm für THz-Strahlung erreicht werden. Die Methode der Streulicht-Nahfeldmikroskopie (s-SNOM) verspricht jedoch dieses Beugungslimit zu durchbrechen.
In der vorliegenden Arbeit wird die Realisierung der Nahfeld-Mikroskopie und Spektroskopie im THz-Spektralbereich von 30–1500 μm (0.2–10 THz) präsentiert. Dies wurde mittels zweier grundsätzlich unterschiedlichen Strahlungsquellen an separaten Experimentaufbauten erreicht: Einer photoleitenden Antenne welche gepulste breitbandige THz-Strahlung von 0.2–2 THz emittiert, sowie einem Freie- Elektronen Laser (FEL) als schmalbandige hochleistungs Quelle, durchstimmbar von 1.3–10 THz.
Mit dem photoleitenden Antennensystem konnte zum ersten mal demonstriert werden, dass mit breitbandigen THz-Pulsen Nahfeldspektroskopie möglich ist. Dazu wurde die übliche THz-Time-Domain-Spektroskopie (THz-TDS) zur Erhaltung der spektroskopischen s-SNOM Informationen, sowie asynchrones optisches Abtasten (ASOPS) für schnelle Fernfeld Spektroskopie eingesetzt. Die nahfeldspektroskopischen Fähigkeiten des Mikroskops wurden anhand von Messungen an Gold sowie unterschiedlich dotierten Siliziumproben demonstriert. Dabei konnte gezeigt werden, dass die spektrale Antwort den theoretischen Voraussagen des Drude- sowie Dipol Modells folgt. Während das breitband THz-TDS basierte s-SNOM spektroskopische Nahfelduntersuchungen zulässt, limitiert jedoch die schwache Ausgangsleistung der THz-quelle diese Technik insofern, dass praktisch nur Punktspektroskopie an ausgesuchten Probenstellen möglich ist.
Für echte nanoskopische Nahfeldbildgebung wurde daher ein FEL als durchstimmbare hochleistungs THz-Quelle in Kombination mit der s-SNOM-Technik erforscht. Hierzu wurden die charakteristischen Nahfeld-Signaturen bei Wellenlängen von 35–230 μm untersucht, gefolgt von die Verwirklichung materialsensitiver THz Nahfeldbildgebung gezeigt an Goldstreifen mit bis zu 60 nm Auflösung. Dabei kann nicht nur das Gold von dem Glassubstrat unterschieden werden, sondern auch Ablagerungen als Überreste des Fabrikationsprozesses identifiziert werden. Um die Grenzen der Auflösungsmöglichkeiten dieser Technik zu sondieren, wurden weiterhin die Nahfelder von gemusterten Gold-Nanostrukturen (Fischer-Pattern) bei Wellenlängen bis zu 230 μm (1.2 THz) abgebildet. Hierbei wurde eine Auflösung von 50 nm festgestellt. Schliesslich konnte der topographieunabhängige Materialkontrast von eingebetteten organischen Strukturen, exemplarisch bei 150 μm Wellenlänge, gezeigt werden.
Die Fähigkeit, spektroskopische Aufnahmen mittels der THZ-s-SNOM Technik zu erzeugen, wird der Grundlagenforschung und in der Nanotechnologie zu Gute kommen, und weiterhin Anwendungen in der Chemischen- und Halbleiterindustrie ermöglichen.
|
58 |
Scattering Scanning Near-Field Optical Microscopy on Anisotropic DielectricsSchneider, Susanne Christine 31 August 2007 (has links)
Near-field optical microscopy allows the nondestructive examination of surfaces with a spatial resolution far below the diffraction limit of Abbe. In fact, the resolution of this kind of microscope is not at all dependent on the wavelength, but is typically in the range of 10 to 100 nanometers. On this scale, many materials are anisotropic, even though they might appear isotropic on the macroscopic length scale. In the present work, the previously never studied interaction between a scattering-type near-field probe and an anisotropic sample is examined theoretically as well as experimentally. In the theoretical part of the work, the analytical dipole model, which is well known for isotropic samples, is extended to anisotropic samples. On isotropic samples one observes an optical contrast between different materials, whereas on anisotropic samples one expects an additional contrast between areas with different orientations of the same dielectric tensor. The calculations show that this anisotropy contrast is strong enough to be observed if the sample is excited close to a polariton resonance. The experimental setup allows the optical examination in the visible and in the infrared wavelength regimes. For the latter, a free-electron laser was used as a precisely tunable light source for resonant excitation. The basic atomic force microscope provides a unique combination of different scanning probe microscopy methods that are indispensable in order to avoid artifacts in the measurement of the near-field signal and the resulting anisotropy contrast. Basic studies of the anisotropy contrast were performed on the ferroelectric single crystals barium titanate and lithium niobate. On lithium niobate, we examined the spectral dependence of the near-field signal close to the phonon resonance of the sample as well as its dependence on the tip-sample distance, the polarization of the incident light, and the orientation of the sample. On barium titanate, analogous measurements were performed and, additionally, areas with different types of domains were imaged and the near-field optical contrast due to the anisotropy of the sample was directly measured. The experimental results of the work agree with the theoretical predictions. A near-field optical contrast due to the anisotropy of the sample can be measured and allows areas with different orientations of the dielectric tensor to be distinguished optically. The contrast results from variations of the dielectric tensor components both parallel and perpendicular to the sample surface. The presented method allows the optical examination of anisotropies of a sample with ultrahigh resolution, and promises applications in many fields of research, such as materials science, information technology, biology, and nanooptics. / Die optische Nahfeldmikroskopie ermöglicht die zerstörungsfreie optische Unter- suchung von Oberflächen mit einer räumlichen Auflösung weit unterhalb des klas- sischen Beugungslimits von Abbe. Die Auflösung dieser Art von Mikroskopie ist unabhängig von der verwendeten Wellenlänge und liegt typischerweise im Bereich von 10-100 Nanometern. Auf dieser Längenskala zeigen viele Materialien optisch anisotropes Verhalten, auch wenn sie makroskopisch isotrop erscheinen. In der vorliegenden Arbeit wird die bisher noch nicht bestimmte Wechselwirkung einer streuenden Nahfeldsonde mit einer anisotropen Probe sowohl theoretisch als auch experimentell untersucht. Im theoretischen Teil wird das für isotrope Proben bekannte analytische Dipol- modell auf anisotrope Materialien erweitert. Während fÄur isotrope Proben ein reiner Materialkontrast beobachtet wird, ist auf anisotropen Proben zusätzlich ein Kontrast zwischen Bereichen mit unterschiedlicher Orientierung des Dielektrizitätstensors zu erwarten. Die Berechnungen zeigen, dass dieser Anisotropiekontrast messbar ist, wenn die Probe nahe einer Polaritonresonanz angeregt wird. Der verwendete experimentelle Aufbau ermöglicht die optische Untersuchung von Materialien im sichtbaren sowie im infraroten Wellenlängenbereich, wobei zur re- sonanten Anregung ein Freie-Elektronen-Laser verwendet wurde. Das dem Nahfeld- mikroskop zugrunde liegende Rasterkraftmikroskop bietet eine einzigartige Kombi- nation verschiedener Rastersondenmikroskopie-Methoden und ermöglicht neben der Untersuchung von komplementären Probeneigenschaften auch die Unterdrückung von mechanisch und elektrisch induzierten Fehlkontrasten im optischen Signal. An den ferroelektrischen Einkristallen Lithiumniobat und Bariumtitanat wurde der anisotrope Nahfeldkontrast im infraroten WellenlÄangenbereich untersucht. An eindomÄanigem Lithiumniobat wurden das spektrale Verhalten des Nahfeldsignals sowie dessen charakteristische Abhängigkeit von Polarisation, Abstand und Proben- orientierung grundlegend untersucht. Auf Bariumtitanat, einem mehrdomänigen Kristall, wurden analoge Messungen durchgeführt und zusätzlich Gebiete mit ver- schiedenen Domänensorten abgebildet, wobei ein direkter nachfeldoptischer Kon- trast aufgrund der Anisotropie der Probe nachgewiesen werden konnte. Die experimentellen Ergebnisse dieser Arbeit stimmen mit den theoretischen Vorhersagen überein. Ein durch die optische Anisotropie der Probe induzierter Nahfeldkontrast ist messbar und erlaubt die optische Unterscheidung von Gebie- ten mit unterschiedlicher Orientierung des Dielektriziätstensors, wobei eine Än- derung desselben sowohl parallel als auch senkrecht zur Probenoberfläche messbar ist. Diese Methode erlaubt die hochauflösende optische Untersuchung von lokalen Anisotropien, was in zahlreichen Gebieten der Materialwissenschaft, Speichertech- nik, Biologie und Nanooptik von Interesse ist.
|
59 |
Computational and Experimental Study of the Primary Atomisation Process under Different Injection ConditionsGonzález Montero, Lucas Antonio 12 December 2022 (has links)
[ES] El proceso de atomización primaria es el mecanismo por el cual una vena líquida se disgrega en un ambiente gaseoso. Este proceso está presente en muchas aplicaciones de ingeniería realizando diferentes tareas. En ocasiones es un paso previo antes de ser quemado, como en la industria energética o de propulsión, donde el objetivo es extraer la energía específica del líquido. En otros sectores, como el revestimiento o la extinción de incendios, el objetivo es maximizar el área cubierta por el chorro. Sin embargo, aunque la atomización es una parte fundamental de varios procesos industriales, está lejos de comprenderse por completo. El proceso de atomización es una mezcla de fenómenos de interacción gas-líquido dentro de un campo turbulento que tiene lugar en el campo cercano, que es la región más densa del chorro.
Cuando se trata de arrojar luz sobre el proceso de atomización primaria, el problema principal es la falta de teorías físicas definitivas capaces de vincular los complejos eventos de ruptura con la turbulencia. El principal obstáculo que impide investigar el proceso de atomización primaria es la incapacidad de las técnicas ópticas clásicas para proporcionar información de la región densa del chorro. Solo en los últimos años, las nuevas técnicas basadas en rayos X podrían proporcionar nueva información sobre las características de la atomización cerca de la salida de la tobera. Esto también afecta a los modelos computacionales de atomización primaria que, al no disponer de información experimental sobre la región densa, requieren una calibración precisa de sus constantes para proporcionar resultados fiables en el campo lejano.
Esta tesis se centra en mejorar el conocimiento del proceso de atomización primaria, especialmente en cómo las condiciones de inyección afectan el desarrollo del chorro en el campo cercano desde dos puntos de vista diferentes. Por un lado, con un enfoque computacional usando Direct Numerical Simulations y, por otro lado, experimentalmente usando Near-Field Microscopy.
El estudio computacional se centra en variar los números de Reynolds y Weber de inyección. Los resultados muestran que aumentar el número de Reynolds mejora la desintegración del líquido, mostrando un aumento de las gotas generadas y una nube de gotas más fina. Sin embargo, la falta de un perfil turbulento de flujo de entrada completamente desarrollado conduce a comportamientos inesperados en la longitud de ruptura de la vena líquida que también aumenta con el número de Reynolds. El número de gotas también aumenta cuando aumenta el número de Weber, pero los tamaños característicos de las gotas siguen siendo los mismos. La longitud de ruptura no varía, lo que sugiere que las variaciones de la tensión superficial afectan la ruptura de las gotas y los ligamentos, pero no la desintegración del núcleo líquido en sí. Con los resultados obtenidos de ambos estudios, se propone un modelo fenomenológico que predice la distribución del tamaño de gota en función de las condiciones de inyección.
Además, también se ha estudiado el efecto de usar toberas elípticas. Se ha obtenido que el número de gotas detectadas aumenta en comparación con el chorro redondo manteniendo ángulos de apertura del chorro similares. Sin embargo, cuando se utilizan toberas extremadamente excéntricas, la disminución de la turbulencia del flujo de entrada contrarresta los beneficios de este tipo de inyectores.
En cuanto al análisis experimental, usar Near-Field Microscopy permite magnificar la región densa y analizar las características macroscópicas del chorro. Por lo tanto, se varían las presiones de inyección y descarga, centrándose en el ángulo de apertura del chorro. Se observa el aumento esperado en el ángulo al aumentar tanto la presión de inyección como la de descarga. Sin embargo, adicionalmente, se realiza un análisis de las perturbaciones del contorno del chorro, concluyendo que, al aumentar la presión de inyección, y por lo tanto la turbulencia del flujo de / [CA] El procés d'atomització primària és el mecanisme pel qual una vena líquida es disgrega en un ambient gasós. Aquest procés és present en moltes aplicacions d'enginyeria fent diferents tasques. De vegades és un pas previ abans de ser cremat, com ara en la indústria energètica o de propulsió, on l'objectiu és extraure l'energia específica del líquid. En altres sectors, com ara el revestiment o l'extinció d'incendis, l'objectiu és maximitzar l'àrea coberta pel doll. No obstant això, tot i que l'atomització és una part fonamental de diversos processos industrials, està lluny de comprendre's per complet. El procés d'atomització és una barreja de fenòmens d'interacció gas-líquid dins d'un camp turbulent que té lloc en el camp pròxim, que és la regió més densa del doll.
Quan es tracta de donar llum sobre el procés d'atomització primària, el problema principal és la falta de teories físiques definitives capaces de vincular els complexos esdeveniments de trencament amb la turbulència. El principal obstacle que impedeix investigar el procés d'atomització primària és la incapacitat de les tècniques òptiques clàssiques per a proporcionar informació de la regió densa del doll. Només en els últims anys, les noves tècniques basades en raigs X podrien proporcionar nova informació sobre les característiques de l'atomització prop de l'eixida de la tovera. Això també afecta els models computacionals d'atomització primària que, en no disposar d'informació experimental sobre la regió densa, requereixen un calibratge precís de les seues constants per a proporcionar resultats fiables en el camp llunyà.
Aquesta tesi se centra a millorar el coneixement del procés d'atomització primària, especialment en com les condicions d'injecció afecten el desenvolupament del doll en el camp pròxim des de dos punts de vista diferents. D'una banda, amb un enfocament computacional usant Direct Numerical Simulations i, d'altra banda, experimentalment usant Near-Field Microscopy.
L'estudi computacional se centra a variar els nombres de Reynolds i Weber d'injecció. Els resultats mostren que augmentar el nombre de Reynolds millora la desintegració del líquid, tot mostrant un augment de les gotes generades i un núvol de gotes més fi. No obstant això, la falta d'un perfil turbulent de flux d'entrada completament desenvolupat condueix a comportaments inesperats en la longitud de ruptura de la vena líquida que també augmenta amb el nombre de Reynolds. El nombre de gotes també augmenta quan creix el nombre de Weber, però les grandàries característiques de les gotes continuen sent les mateixes. La longitud de ruptura no varia, la qual cosa suggereix que les variacions de la tensió superficial afecten la ruptura de les gotes i els lligaments, però no la desintegració del nucli líquid en ell mateix. Amb els resultats obtinguts de tots dos estudis, es proposa un model fenomenològic que prediu la distribució de la grandària de gota en funció de les condicions d'injecció.
A més, també s'ha estudiat l'efecte d'usar toveres el·líptiques. S'ha obtingut que el nombre de gotes detectades augmenta en comparació amb el doll redó tot mantenint angles d'obertura del doll similars. No obstant això, quan s'utilitzen toveres extremadament excèntriques, la disminució de la turbulència del flux d'entrada contraresta els beneficis d'aquesta mena d'injectors.
Quant a l'anàlisi experimental, usar Near-Field Microscopy permet magnificar la regió densa i analitzar les característiques macroscòpiques del doll. Per tant, es varien les pressions d'injecció i descàrrega, tot centrant-se en l'angle d'obertura del doll. S'observa l'augment esperat en l'angle en augmentar tant la pressió d'injecció com la de descàrrega. No obstant això, addicionalment, es realitza una anàlisi de les pertorbacions del contorn del doll i es conclou que en augmentar la pressió d'injecció, i per tant la turbulència del flux d'entrada, augmenten les pertorbacions en el contorn del ruixat, especialment a pressions de descàrrega mé / [EN] The primary atomisation process is the mechanism by which a liquid vein breaks into droplets in a gaseous ambient. This process is present in many engineering applications accomplishing different tasks. Sometimes it is a previous step before being burned, as in the energy or propulsion industry, where the objective is to extract the specific energy of the liquid. In other sectors, such as the coating or fire extinction, the objective is to maximise the area covered by the droplet cloud. However, although atomisation is a fundamental part of several industrial processes, it is far from fully understood. The atomisation process is a mixture of gas-liquid interaction phenomena within a turbulent field that takes place in the near-field, which is the denser region of the spray.
When trying to shed light on the primary atomisation process, the main issue is the lack of definitive physical theories able to link the complex breakup events and the turbulence. The principal impediment that prevents the investigation from breaking through the atomisation process is the inability of the classic optical techniques to provide information from the dense region of the spray. Only in the last years, newer techniques based on X-Ray could provide new information on spray characteristics near the nozzle outlet. This also affects the computational primary atomisation models that, as there is no available experimental information on the dense region, require an accurate calibration of their constants to provide reliable results on the far-field.
This thesis focuses on improving the knowledge of the primary atomisation process, especially on how the injection conditions affect the spray development in the near field from two different standpoints. On the one hand, with a computational approach using Direct Numerical Simulations and on the other hand, experimentally using Near-Field Microscopy.
The computational study is focused on varying the inflow Reynolds and Weber numbers. Results show that increasing the Reynolds number improves the liquid disintegration, exhibiting an increase of generated droplets and a finer droplet cloud. However, the lack of a fully developed inflow turbulent profile leads to characteristic behaviours on the breakup length of the spray that also increases with the Reynolds number. The number of droplets increases when the Weber number increases, but the characteristic droplet sizes remain the same. The breakup length does not vary, suggesting that the surface tension variations affect the droplet and ligament breakup but not the core disintegration itself. With the results obtained from both studies, a phenomenological model is proposed to predict the droplet size distribution depending on the injection conditions.
Additionally, using elliptical nozzles, the number of detected droplets increases compared with the round spray and maintain similar spray apertures. However, when using extremely eccentric nozzles, the inflow turbulence decrease counteracts the elliptical sprays' benefits.
Regarding the experimental analysis, the Near-Field Microscopy magnifies the dense region and analyses the macroscopic features on the spray. So the injection and discharge pressure are varied, and the spotlight is put on the spray angle. The expected increase in the spray angle when increasing both the injection and discharge pressure is observed. Nevertheless, additionally, an analysis of the spray contour perturbations is performed, concluding that increasing the injection pressure, and thus the inflow turbulence, increases the perturbations on the spray contour, especially at lower discharge pressures. / González Montero, LA. (2022). Computational and Experimental Study of the Primary Atomisation Process under Different Injection Conditions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/190635
|
Page generated in 0.0846 seconds