• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Relaxation in harmonic oscillator systems and wave propagation in negative index materials

Chimonidou, Antonia 02 June 2010 (has links)
This dissertation is divided up into two parts, each examining a distinct theme. The rst part of our work concerns itself with open quantum systems and the relaxation phenomena arising from the repeated application of an interaction Hamiltonian on systems composed of quantum harmonic oscillators. For the second part of our work, we shift gears and investigate the wave propagation in left-handed media, or materials with simultaneously negative electric permeability and magnetic permeability . Each of these two parts is complete within its own context. In the rst part of this dissertation, we introduce a relaxation-generating model which we use to study the process by which quantum correlations are created when an interaction Hamiltonian is repeatedly applied to bipartite harmonic oscillator systems for some characteristic time interval . The two important time scales which enter our results are discussed in detail. We show that the relaxation time obtained by the application of this repeated interaction scheme is proportional to both the strength of interaction and to the characteristic time interval . Through discussing the implications of our model, we show that, for the case where the oscillator frequencies are equal, the initial Maxwell-Boltzmann distributions of the uncoupled parts evolve to a new Maxwell-Boltzmann distribution through a series of transient Maxwell-Boltzmann distributions, or quasi-stationary, non-equilibrium states. We further analyze the case in which the two oscillator frequencies are unequal and show how the application of the same model leads to a non-thermal steady state. The calculations are exact and the results are obtained through an iterative process, without using perturbation theory. In the second part of this dissertation, we examine the response of a plane wave incident on a at surface of a left-handed material, a medium characterized by simultaneously negative electric permittivity and magnetic permeability . We do this by solving Maxwell's equations explicitly. In the literature up to date, it has been assumed that negative refractive materials are necessarily frequency dispersive. We propose an alternative to this assumption by suggesting that the requirement of positive energy density can be relaxed, and discuss the implications of such a proposal. More speci cally, we show that once negative energy solutions are accepted, the requirement for frequency dispersion is no longer needed. We further argue that, for the purposes of discussing left-handed materials, the use of group velocity as the physically signi cant quantity is misleading, and suggest that any discussion involving it should be carefully reconsidered. / text

Page generated in 0.1657 seconds