Spelling suggestions: "subject:"neisseria meningitidis"" "subject:"neisseria meningititdis""
111 |
Etudes Biochimique et Structurale de DsbA1, DsbA2 et DsbA3 : les trois homologues à l'oxydoréductase de Thiol-disulfure DsbA chez Neisseria meningitidis.Lafaye, Céline 26 November 2009 (has links) (PDF)
Neisseria meningitidis est le principal agent responsable de méningites bactériennes. Les interactions hôte-pathogène dépendent du repliement correct de nombreuses protéines de surface, qui nécessite souvent la formation de ponts disulfures. Chez les bactéries à Gram-négatif, la synthèse de ces ponts est catalysée par l'oxydoréductase de thiol-disulfure DsbA. N. meningitidis possède trois gènes qui codent pour trois DsbA actives : DsbA1, DsbA2 et DsbA3. DsbA1 et DsbA2 sont des lipoprotéines impliquées dans la virulence alors que DsbA3 est une enzyme soluble périplasmique non reliée à la virulence. Les travaux de cette thèse se rapportent aux caractérisations biochimiques de ces trois enzymes et structurales de DsbA1 et DsbA3. DsbA1 et DsbA3 adoptent le repliement classique de DsbA d'Escherichia coli. La caractéristique la plus étonnante partagée par ces trois enzymes est leur exceptionnel pouvoir oxydant. Avec un potentiel redox de -80 mV, les DsbA de Neisseria sont les enzymes de la famille des thiorédoxines les plus oxydantes connues à ce jour. En accord avec cela, les études de stabilité thermales indiquent que leur forme réduite est extrêmement stable. Pour chacune de ces enzymes, les études montrent que le résidu Thréonine, retrouvé dans la région du site actif, joue un rôle clé dans la détermination de cet extraordinaire pouvoir oxydant. L'ensemble de ces résultats montrent comment des résidus situés en dehors du motif actif CXXC peuvent influencer le potentiel redox de membres de la famille des thiorédoxines. Ils montrent également que le phénotype associé à DsbA3 chez N. meningitidis ne peut être expliqué par une différence d'activité redox ou de structure.
|
112 |
Synthesis of Structures Related to the Capsular Polysaccharide of<i> Neisseria</i> <i>meningitidis</i> Serogroup A and to MycothiolSlättegård, Rikard January 2007 (has links)
<p>This thesis describes the synthesis of structures related to the capsular polysaccharide of <i>Neisseria meningitidis</i> serogroup A and the synthesis of analogues of mycothiol, a compound produced by <i>Mycobacterium</i> <i>tuberculosis</i>. The first part of the thesis describes the synthesis of structural elements present in the native capsular polysaccharide of <i>Neisseria</i> <i>meningitidis</i> serogroup A. In this part, an improved synthesis of 2-azido-2-deoxy-D-mannopyranose is included. The second part of the thesis describes the formation of stable C-phosphonate analogues related to the capsular polysaccharide. The last part outlines the formation of analogues of mycothiol, where the syntheses of a bicyclic analogue and a thioglycosidic analogue are described.</p>
|
113 |
Synthesis of Structures Related to the Capsular Polysaccharide of Neisseria meningitidis Serogroup A and to MycothiolSlättegård, Rikard January 2007 (has links)
This thesis describes the synthesis of structures related to the capsular polysaccharide of Neisseria meningitidis serogroup A and the synthesis of analogues of mycothiol, a compound produced by Mycobacterium tuberculosis. The first part of the thesis describes the synthesis of structural elements present in the native capsular polysaccharide of Neisseria meningitidis serogroup A. In this part, an improved synthesis of 2-azido-2-deoxy-D-mannopyranose is included. The second part of the thesis describes the formation of stable C-phosphonate analogues related to the capsular polysaccharide. The last part outlines the formation of analogues of mycothiol, where the syntheses of a bicyclic analogue and a thioglycosidic analogue are described.
|
114 |
L'impact du délai pré-thérapeutique sur la mortalité et la morbidité des méningites bactériennes de l'enfant étude rétrospective à Nantes de 1997 à 2005 /Romefort, Bénédicte Gras-Le Guen, Christèle January 2007 (has links)
Thèse d'exercice : Médecine. Pédiatrie : Université de Nantes : 2007. / Bibliogr.
|
115 |
Molecular changes in the topoisomerase genes, gyrA and parC, and their contribution to fluoroquinolone resistance in the pathogenic Neisseria.Hogan, Tiffany Rose, School of Medical Science, UNSW January 2006 (has links)
This thesis examined molecular changes in the quinolone-resistance determining regions (QRDRs) of the topoisomerase genes, gyrA and parC of Neisseria gonorrhoeae and Neisseria meningitidis and their contribution to fluoroquinolone resistance (FQR). Initially models of FQR emergence were developed from analysis of resistant mutants generated in vitro. The effects of the nature and order of sequential changes in GyrA and ParC on FQR were explored by correlating QRDR changes with ciprofloxacin minimum inhibitory concentration (MIC) determinations. The in vitro models were validated by comparisons of QRDR changes and MICs in two populations of wild-type FQR N. gonorrhoeae over a wide MIC range (0.09 to 24??g/mL), and in a wild type FQR meningococcus. The in vitro activities of three newer quinolones with differential activity on GyrA and ParC were compared with that of ciprofloxacin. Key findings were that the initial QRDR changes always occurred in gyrA and were the predominant influence on phenotypic expression of FQR. QRDR alterations were acquired sequentially and two GyrA and two ParC changes represented the full complement of changes observed in gonococci and two GyrA and one ParC change those in meningococci. GyrA alterations at Ser-91 in gonococci and Thr???91 in meningococci were pivotal for the development of further resistance. ParC changes required the presence of two GyrA alterations for any major impact on FQR. ParC substitutions, Ser-87???Arg and Glu-91???Gly in gonococci and Cys- 85???Asp and Glu-91???Lys in meningococci led to the expression of the highest FQR levels. Examination of FQR in wild-type meningococci was necessarily restricted, but analyses using the broader MIC range available in in-vitro-derived FQR meningococci (0.09 to 16??g/mL) revealed the first ParC changes in N. meningitidis. The study also redefined QRDR boundaries and described novel mutations within them. The nature of sequence changes in GyrA and ParC in FQR Neisseria also affected the relative activities of the three newer quinolones. Trovafloxacin was the most active quinolone in vitro but MIC differences with ciprofloxacin were mutation-dependent. Grepafloxacin and moxifloxacin were only slightly more active than ciprofloxacin in the presence of multiple QRDR changes. This thesis provides a comprehensive analysis of the relationship between QRDR alterations and FQR in N. gonorrhoeae and offers insights into the potential for FQR development in N. meningitidis.
|
116 |
Molecular changes in the topoisomerase genes, gyrA and parC, and their contribution to fluoroquinolone resistance in the pathogenic Neisseria.Hogan, Tiffany Rose, School of Medical Science, UNSW January 2006 (has links)
This thesis examined molecular changes in the quinolone-resistance determining regions (QRDRs) of the topoisomerase genes, gyrA and parC of Neisseria gonorrhoeae and Neisseria meningitidis and their contribution to fluoroquinolone resistance (FQR). Initially models of FQR emergence were developed from analysis of resistant mutants generated in vitro. The effects of the nature and order of sequential changes in GyrA and ParC on FQR were explored by correlating QRDR changes with ciprofloxacin minimum inhibitory concentration (MIC) determinations. The in vitro models were validated by comparisons of QRDR changes and MICs in two populations of wild-type FQR N. gonorrhoeae over a wide MIC range (0.09 to 24??g/mL), and in a wild type FQR meningococcus. The in vitro activities of three newer quinolones with differential activity on GyrA and ParC were compared with that of ciprofloxacin. Key findings were that the initial QRDR changes always occurred in gyrA and were the predominant influence on phenotypic expression of FQR. QRDR alterations were acquired sequentially and two GyrA and two ParC changes represented the full complement of changes observed in gonococci and two GyrA and one ParC change those in meningococci. GyrA alterations at Ser-91 in gonococci and Thr???91 in meningococci were pivotal for the development of further resistance. ParC changes required the presence of two GyrA alterations for any major impact on FQR. ParC substitutions, Ser-87???Arg and Glu-91???Gly in gonococci and Cys- 85???Asp and Glu-91???Lys in meningococci led to the expression of the highest FQR levels. Examination of FQR in wild-type meningococci was necessarily restricted, but analyses using the broader MIC range available in in-vitro-derived FQR meningococci (0.09 to 16??g/mL) revealed the first ParC changes in N. meningitidis. The study also redefined QRDR boundaries and described novel mutations within them. The nature of sequence changes in GyrA and ParC in FQR Neisseria also affected the relative activities of the three newer quinolones. Trovafloxacin was the most active quinolone in vitro but MIC differences with ciprofloxacin were mutation-dependent. Grepafloxacin and moxifloxacin were only slightly more active than ciprofloxacin in the presence of multiple QRDR changes. This thesis provides a comprehensive analysis of the relationship between QRDR alterations and FQR in N. gonorrhoeae and offers insights into the potential for FQR development in N. meningitidis.
|
117 |
Molecular changes in the topoisomerase genes, gyrA and parC, and their contribution to fluoroquinolone resistance in the pathogenic Neisseria.Hogan, Tiffany Rose, School of Medical Science, UNSW January 2006 (has links)
This thesis examined molecular changes in the quinolone-resistance determining regions (QRDRs) of the topoisomerase genes, gyrA and parC of Neisseria gonorrhoeae and Neisseria meningitidis and their contribution to fluoroquinolone resistance (FQR). Initially models of FQR emergence were developed from analysis of resistant mutants generated in vitro. The effects of the nature and order of sequential changes in GyrA and ParC on FQR were explored by correlating QRDR changes with ciprofloxacin minimum inhibitory concentration (MIC) determinations. The in vitro models were validated by comparisons of QRDR changes and MICs in two populations of wild-type FQR N. gonorrhoeae over a wide MIC range (0.09 to 24??g/mL), and in a wild type FQR meningococcus. The in vitro activities of three newer quinolones with differential activity on GyrA and ParC were compared with that of ciprofloxacin. Key findings were that the initial QRDR changes always occurred in gyrA and were the predominant influence on phenotypic expression of FQR. QRDR alterations were acquired sequentially and two GyrA and two ParC changes represented the full complement of changes observed in gonococci and two GyrA and one ParC change those in meningococci. GyrA alterations at Ser-91 in gonococci and Thr???91 in meningococci were pivotal for the development of further resistance. ParC changes required the presence of two GyrA alterations for any major impact on FQR. ParC substitutions, Ser-87???Arg and Glu-91???Gly in gonococci and Cys- 85???Asp and Glu-91???Lys in meningococci led to the expression of the highest FQR levels. Examination of FQR in wild-type meningococci was necessarily restricted, but analyses using the broader MIC range available in in-vitro-derived FQR meningococci (0.09 to 16??g/mL) revealed the first ParC changes in N. meningitidis. The study also redefined QRDR boundaries and described novel mutations within them. The nature of sequence changes in GyrA and ParC in FQR Neisseria also affected the relative activities of the three newer quinolones. Trovafloxacin was the most active quinolone in vitro but MIC differences with ciprofloxacin were mutation-dependent. Grepafloxacin and moxifloxacin were only slightly more active than ciprofloxacin in the presence of multiple QRDR changes. This thesis provides a comprehensive analysis of the relationship between QRDR alterations and FQR in N. gonorrhoeae and offers insights into the potential for FQR development in N. meningitidis.
|
118 |
Antimicrobial peptides and pathogenic Neisseria : experimental studies in mouse, man and rat /Bergman, Peter, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2005. / Härtill 5 uppsatser.
|
119 |
Genome-based characterization of Neisseria meningitidis with focus on the emergent serogroup Y diseaseTörös, Bianca January 2014 (has links)
Neisseria meningitidis, also referred to as meningococcus, is one of the leading causes of epidemic meningitis and septicaemia worldwide. Despite modern treatment, meningococcal disease remains associated with a high mortality (about 10%). Meningococcal disease is mainly restricted to specific hypervirulent lineages and specific capsular groups (serogroups), which have a changing global distribution over time. At the end of the 2000s, the previously unusual serogroup Y emerged, corresponding to half of all of the invasive meningococcal disease (IMD) cases in Sweden by the beginning of the 2010s. The aim of this thesis is to describe the emergence of serogroup Y meningococci genetically in an effort to understand some of the factors involved in the successful spread of this group throughout Sweden. In addition, genetic typing schemes were evaluated for surveillance and outbreak investigation. Our results indicate that the currently recommended typing for surveillance of meningococci could be altered to include the factor H-binding protein (fHbp). A highly variable multilocus variable number tandem repeat analysis (HV-MLVA) was able to confirm connected cases in a suspected small outbreak. In addition, a strain type sharing the same porA, fetA, porB, fHbp, penA and multilocus sequence type was found to be the principal cause of the increase in serogroup Y disease. However, a deeper resolution obtained from the core genomes revealed a subtype of this strain, which was mainly responsible for the increase. Finally, when the Swedish serogroup Y genomes were compared internationally, different strains seemed to dominate in different regions. This indicates that the increase was probably not due to one or more point introductions of a strain previously known internationally but more probably multifactorial.
|
120 |
Integrated structural study of the FrpD protein from Neisseria meningitidis / Crystallographic study of the iron-regulated outer membrane lipoprotein (FrpD) from Neisseria meningitidisSVIRIDOVA, Ekaterina January 2016 (has links)
Neisseria meningitidis (N. meningitidis) is a Gram-negative commensal bacterium colonizing nasopharynx of about 10 % of healthy individuals, which can cause invasive diseases, such sepsis and meningitis, upon occasional penetration into bloodstream. Pathogenesis of N. meningitidis appears to be directly related to conditions of limited iron availability. Under these conditions two proteins of unknown function: FrpC and FrpD, are synthesized. FrpD is a highly conserved lipoprotein of N. meningitidis anchored to the bacterial outer membrane. It is known that FrpD tightly binds the FrpC protein, which belongs to the Repeat-in-Toxin (RTX) protein family and may act as bacterial exotoxin. However, the mechanism of FrpD-FrpC interaction and the exact function of this complex are unknown due to the absence of structural information on these proteins. Therefore, we set out to determine the structure of FrpD and provide insights into its interaction mechanism with FrpC and structure-functional relationships of these two proteins. We determined the first crystal and solution structures of the FrpD protein. We found that atomic structures of FrpD reveal a novel protein fold. We uncovered the structure-function relationships underlying the mechanism of interaction between the FrpD and FrpC proteins and tested the putative function of the FrpD-FrpC1-414 complex in vitro. Finally, we proposed the putative function of the FrpD-FrpC1-414 complex as a new minor adhesin of N. meningitidis, which mediates the bacterial adhesion to the host epithelial cells and facilitate the colonization. Our work constitutes the first step in clarifying the molecular basis of the FrpD-FrpC interaction and sets the base for further investigation of the role of FrpD and FrpC in the virulence mechanism of N. meningitidis.
|
Page generated in 0.1046 seconds