• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 18
  • 18
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Strategies to block inhibition and restore plasticity in the central nervous system after injury

Bastos Lopes Alves, João Nuno January 2015 (has links)
No description available.
2

The neuroprotective signaling mechanisms of telomerase via the induction by brain-derived neurotrophic factor (BDNF) in nervoussystem injury

Niu, Chenchen., 牛晨晨. January 2010 (has links)
published_or_final_version / Anatomy / Doctoral / Doctor of Philosophy
3

The plasticity of hypothalamic magnocellular system following axonal damage by hypophysectomy in developing and adult rats

Yuan, Qiuju., 袁秋菊. January 2004 (has links)
published_or_final_version / abstract / toc / Anatomy / Doctoral / Doctor of Philosophy
4

Modulation of CSPG sulfation patterns through siRNA silencing of sulfotransferase expression to promote CNS regeneration

Millner, Mary Angela January 2008 (has links)
Thesis (M. S.)--Biomedical Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Bellamkonda, Ravi; Committee Member: LaPlaca, Michelle; Committee Member: McKeon, Robert
5

Ultrastructural changes in electrically damaged x-enopus laevis sciatic nerve

Margand, Paul Marcus Buchanan 01 January 1991 (has links)
Electrical injury is known to alter the normal physiological function of nerves. In most cases, the change in function is only minor, but in severe instances the physiological function may be lost entirely. The changes in function involve the ability of the nerve to transmit an impulse, which is a function of the nerve's ability to create and maintain an electrical gradient across its membrane. When the nerve is exposed to an electrical current, the ability to maintain an electrical gradient across the membrane is reduced or lost. This change may be transient or permanent. The changes in the gradient hinder the nerve from propagating the impulse, which is the means of information transfer to and from the CNS (central nervous system). Due to the manner in which human victims are typically exposed to an electric shock, the peripheral axons usually display the greatest change in physiological function.
6

Modulation of CSPG sulfation patterns through siRNA silencing of sulfotransferase expression to promote CNS regeneration

Millner, Mary Angela 10 July 2008 (has links)
Injury to the central nervous system (CNS) results in the formation of a highly inhibitory glial scar consisting mainly of chondroitin sulfate proteoglycans (CSPGs). CSPGs are comprised of a protein core with covalently attached chondroitin sulfate glycosaminoglycan (CS-GAG) side chains. CSPGs and CS-GAGs have been implicated in the regenerative failure of the CNS, though the mechanism underlying inhibition is unclear. Sulfation affects both the physical and chemical characteristics of CS-GAGs and, therefore, it has been hypothesized that certain sulfation patterns are more inhibitory than others. To investigate this hypothesis, specific chondroitin sulfate sulfotransferases (CSSTs), the enzymes responsible for CS-GAG sulfation, were knocked down in vitro using siRNA. C4ST-1, C4ST-2, and C46ST were chosen as targets for gene knockdown in this study based on their expression in neural tissue and the extent of inhibition caused by their respective CS-GAG. It was hypothesized that transfection of primary rat astrocytes with siRNAs designed to prevent the expression of C4ST-1, C4ST-2, and C46ST would decrease specific sulfation patterns of CSPGs, resulting in improved neurite extension in a neurite guidance assay. Through optimization of siRNA dose, astrocyte viability was maintained while successfully knocking down mRNA levels of C4ST-1, C4ST-2, and C46ST and significantly reducing total levels of secreted CS-GAGs. However, no increase in the incidence of neurite extension was observed using conditioned media collected from siRNA transfected astrocytes compared to non-transfected controls. These data suggest that sulfation does not contribute to CSPG-mediated neurite inhibition, though further investigation is necessary to confirm these findings. Significantly, this work has established a paradigm for investigating the role of CSPG sulfation patterns in CNS regeneration.
7

Neuronal Survival After Dendrite Amputation: Investigation of Injury Current Blockage

Shi, Ri Yi 12 1900 (has links)
After dendrite transection, two primary injury current pathways may acount for cell death: (1) the lesion current at the site of injury and (2) the voltage sensitive calcium channels along the dendrite. Lesions were made with a laser microbeam in mouse spinal monolayer cell cultures. Polylysine was tried as a positively charged "molecular bandage" to block the lesion current. The calcium channel blockers, verapamil and nifedipine, were used to reduce the calcium channel current. Control toxicity curves were obtained for all three compounds. The results show that neither verapamil, nifedipine, nor polylysine (MW: 3,300) protect nerve cells after dendrite amputation 100 ptm from the soma. The data also indicate that these compounds do not slow the process of cell death after such physical trauma.
8

Elucidating endothelial Caspase-9 signaling pathways in retinal vein occlusion

Potenski, Anna Michelle January 2022 (has links)
Central nervous system (CNS) tissues are highly metabolically active which makes them particularly susceptible to vascular injury. Disruption to the supply of oxygen and nutrients by damaged vasculature can result in neurodegeneration in both the eye and brain. The retina is an accessible part of the CNS that can be taken advantage of to study neurovascular diseases through live, non-invasive visualization of vascular and neuronal conditions upon injury. Retinal vein occlusion (RVO) is a common neurovascular disease of the eye and is the second leading cause of blindness in working age adults. While pathophysiology is well described and can be determined by retinal edema, breakdown of the blood-retina-barrier (BRB), inflammation, and neurodegeneration, the underlying signaling pathways behind the pathology is not well understood. To understand the mechanism of disease in RVO, the Troy lab has employed a mouse model to investigate pathways. Previous studies in the lab determined that as early as 1 hour post RVO, there was a large induction of caspase-9, a known cell death protease, in endothelial cells. When further investigated, it was confirmed that these cells were not dying despite the high expression of caspase-9, implying a non-apoptotic role. Deletion of endothelial caspase-9 was sufficient to protect against the development of retinal edema, capillary ischemia, and neuronal death, indicating caspase-9 is a key player in the mechanism of disease. This thesis work aims to investigate which signaling events drive non-apoptotic endothelial caspase-9 signaling by investigating upstream and downstream mechanisms of endothelial caspase-9. To interrogate this question, the mouse model of RVO was optimized, limiting the variability previously observed to ensure accurate and reproducible results. Then, we used a tamoxifen inducible endothelial cell Apaf-1 (apoptosis protease activating factor-1) knock out (Apaf-1 iECKO) mouse line in order to investigate the contribution of upstream activation of non-apoptotic endothelial caspase-9 signaling. Apaf-1 iECKO mice and WT littermates were subjected to RVO. Then, expression of caspase-9 and -7, retinal edema, capillary ischemia, neuronal death, vision dysfunction, and BRB integrity were measured. The deletion of endothelial Apaf-1 resulted in reduced expression of cl-caspase-9 and caspase-7, indicating endothelial caspase-9 was activated by Apaf-1. Apaf-1 deletion also resulted in protection against some of the pathologies seen after RVO including retinal edema, capillary ischemia, and neurodegeneration. Lastly, in order to elucidate the signaling pathway further, experiments using endothelial cell-specific AAVs (adeno-associated virus) packaged with a downstream caspase-7 inhibitor were proposed and described. In sum, this thesis work reveals that endothelial caspase-9 is canonically activated by Apaf-1, but still leads to non-apoptotic signaling, indicating downstream caspase-9 substrates could be the source for non-apoptotic function within endothelial cells.
9

Effects of neurotrophic factors on motoneuron survival following axonal injury in developing rats

袁秋菊, Yuan, Qiuju. January 2001 (has links)
published_or_final_version / Anatomy / Master / Master of Philosophy
10

Cloning of hamster GAP-43 to study the expression and regulation of GAP-43 mRNA in the retina during degeneration and regeneration

陳博文。, Chan, Pok-man. January 1998 (has links)
published_or_final_version / Anatomy / Master / Master of Philosophy

Page generated in 0.1052 seconds