• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 9
  • 7
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Reconfigurable System-on-Chip Architecture for Neural Signal Processing

Balasubramanian, Karthikeyan January 2011 (has links)
Analyzing the brain's behavior in terms of its neuronal activity is the fundamental purpose of Brain-Machine Interfaces (BMIs). Neuronal activity is often assumed to be encoded in the rate of neuronal action potential spikes. Successful performance of a BMI system is tied to the efficiency of its individual processing elements such as spike detection, sorting and decoding. To achieve reliable operation, BMIs are equipped with hundreds of electrodes at the neural interface. While a single electrode/tetrode communicates with up to four neurons at a given instant of time, a typical interface communicates with an ensemble of hundreds or even thousands of neurons. However, translation of these signals (data) into usable information for real-time BMIs is bottlenecked due to the lack of efficient real-time algorithms and real-time hardware that can handle massively parallel channels of neural data. The research presented here addresses this issue by developing real-time neural processing algorithms that can be implemented in reconfigurable hardware and thus, can be scaled to handle thousands of channels in parallel. The developed reconfigurable system serves as an evaluation platform for investigating the fundamental design tradeoffs in allocating finite hardware resources for a reliable BMI. In this work, the generic architectural layout needed to process neural signals in a massive scale is discussed. A System-on-Chip design with embedded system architecture is presented for FPGA hardware realization that features (a) scalability (b) reconfigurability, and (c) real-time operability. A prototype design incorporating a dual processor system and essential neural signal processing routines such as real-time spike detection and sorting is presented. Two kinds of spike detectors, a simple threshold-based and non-linear energy operator-based, were implemented. To achieve real-time spike sorting, a fuzzy logic-based spike sorter was developed and synthesized in the hardware. Furthermore, a real-time kernel to monitor the high-level interactions of the system was implemented. The entire system was realized in a platform FPGA (Xilinx Virtex-5 LX110T). The system was tested using extracellular neural recordings from three different animals, a owl monkey, a macaque and a rat. Operational performance of the system is demonstrated for a 300 channel neural interface. Scaling the system to 900 channels is trivial. / Electrical and Computer Engineering
12

Developing a Neural Signal Processor Using the Extended Analog Computer

Soliman, Muller Mark 21 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Neural signal processing to decode neural activity has been an active research area in the last few decades. The next generation of advanced multi-electrode neuroprosthetic devices aim to detect a multiplicity of channels from multiple electrodes, making the relatively time-critical processing problem massively parallel and pushing the computational demands beyond the limits of current embedded digital signal processing (DSP) techniques. To overcome these limitations, a new hybrid computational technique was explored, the Extended Analog Computer (EAC). The EAC is a digitally confgurable analog computer that takes advantage of the intrinsic ability of manifolds to solve partial diferential equations (PDEs). They are extremely fast, require little power, and have great potential for mobile computing applications. In this thesis, the EAC architecture and the mechanism of the formation of potential/current manifolds was derived and analyzed to capture its theoretical mode of operation. A new mode of operation, resistance mode, was developed and a method was devised to sample temporal data and allow their use on the EAC. The method was validated by demonstration of the device solving linear diferential equations and linear functions, and implementing arbitrary finite impulse response (FIR) and infinite impulse response (IIR) linear flters. These results were compared to conventional DSP results. A practical application to the neural computing task was further demonstrated by implementing a matched filter with the EAC simulator and the physical prototype to detect single fiber action potential from multiunit data streams derived from recorded raw electroneurograms. Exclusion error (type 1 error) and inclusion error (type 2 error) were calculated to evaluate the detection rate of the matched filter implemented on the EAC. The detection rates were found to be statistically equivalent to that from DSP simulations with exclusion and inclusion errors at 0% and 1%, respectively.
13

Low Power and Low Area Techniques for Neural Recording Application

Chaturvedi, Vikram January 2012 (has links) (PDF)
Chronic recording of neural signals is indispensable in designing efficient brain machine interfaces and to elucidate human neurophysiology. The advent of multi-channel micro-electrode arrays has driven the need for electronic store cord neural signals from many neurons. The continuous increase in demand of data from more number of neurons is challenging for the design of an efficient neural recording frontend(NRFE). Power consumption per channel and data rate minimization are two key problems which need to be addressed by next generation of neural recording systems. Area consumption per channel must be low for small implant size. Dynamic range in NRFE can vary with time due to change in electrode-neuron distance or background noise which demands adaptability. In this thesis, techniques to reduce power-per-channel and area-per-channel in a NRFE, via new circuits and architectures, are proposed. An area efficient low power neural LNA is presented in UMC 0.13 μm 1P8M CMOS technology. The amplifier can be biased adaptively from 200 nA to 2 μA , modulating input referred noise from 9.92 μV to 3.9μV . We also describe a low noise design technique which minimizes the noise contribution of the load circuitry. Optimum sizing of the input transistors minimizes the accentuation of the input referred noise of the amplifier. It obviates the need of large input coupling capacitance in the amplifier which saves considerable amount of chip area. In vitro experiments were performed to validate the applicability of the neural LNA in neural recording systems. ADC is another important block in a NRFE. An 8-bit SAR ADC along with the input and reference buffer is implemented in 0.13 μm CMOS technology. The use of ping-pong input sampling is emphasized for multichannel input to alleviate the bandwidth requirement of the input buffer. To reduce the output data rate, the A/D process is only enabled through a proposed activity dependent A/D scheme which ensures that the background noise is not processed. Based on the dynamic range requirement, the ADC resolution is adjusted from 8 to 1 bit at 1 bit step to reduce power consumption linearly. The ADC consumes 8.8 μW from1Vsupply at1MS/s and achieves ENOB of 7.7 bit. The ADC achieves FoM of 42.3 fJ/conversion in 0.13 μm CMOS technology. Power consumption in SARADCs is greatly benefited by CMOS scaling due to its highly digital nature. However the power consumption in the capacitive DAC does not scale as well as the digital logic. In this thesis, two energy-efficient DAC switching techniques, Flip DAC and Quaternary capacitor switching, are proposed to reduce their energy consumption. Using these techniques, the energy consumption in the DAC can be reduced by 37 % and 42.5 % compared to the present state-of-the-art. A novel concept of code-independent energy consumption is introduced and emphasized. It mitigates energy consumption degradation with small input signal dynamic range.

Page generated in 0.0421 seconds