• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 165
  • 124
  • 57
  • 30
  • 13
  • Tagged with
  • 384
  • 156
  • 122
  • 110
  • 84
  • 75
  • 70
  • 70
  • 57
  • 48
  • 40
  • 38
  • 33
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Comparaison de systèmes de traduction automatique pour la post édition des alertes météorologique d'Environnement Canada

van Beurden, Louis 08 1900 (has links)
Ce mémoire a pour but de déterminer la stratégie de traduction automatique des alertes météorologiques produites par Environnement Canada, qui nécessite le moins d’efforts de postédition de la part des correcteurs du bureau de la traduction. Nous commencerons par constituer un corpus bilingue d’alertes météorologiques représentatives de la tâche de traduction. Ensuite, ces données nous serviront à comparer les performances de différentes approches de traduction automatique, de configurations de mémoires de traduction et de systèmes hybrides. Nous comparerons les résultats de ces différents modèles avec le système WATT, développé par le RALI pour Environnement Canada, ainsi qu’avec les systèmes de l’industrie GoogleTranslate et DeepL. Nous étudierons enfin une approche de postédition automatique. / The purpose of this paper is to determine the strategy for the automatic translation of weather warnings produced by Environment Canada, which requires the least post-editing effort by the proofreaders of the Translation Bureau. We will begin by developing a bilingual corpus of weather warnings representative of this task. Then, this data will be used to compare the performance of different approaches of machine translation, translation memory configurations and hybrid systems. We will compare the results of these models with the system WATT, the latest system provided by RALI for Environment Canada, as well as with the industry systems GoogleTranslate and DeepL. Finaly, we will study an automatic post-edition system.
312

Étude comparative et choix optimal du nombre de classes en classification et réseaux de neurones : application en science des données

Sanka, Norbert Bertrand January 2021 (has links) (PDF)
No description available.
313

Numerische Untersuchungen der Bruchfestigkeit und inelastischen Deformationen von offenzelligen keramischen Schaumstrukturen

Settgast, Christoph 13 September 2019 (has links)
Die im Rahmen des Sonderforschungsbereiches SFB 920 entstandene Arbeit beschäftigt sich mit bruchmechanischen Vorgängen und der makroskopischen Beschreibung von offenzelligen Keramikschäumen unter Berücksichtigung des Materialverhaltens des Kompaktmaterials mithilfe von numerischen Simulationen. Dabei steht die thermomechanische Belastung einer solchen Struktur während eines Gießprozesses im Vordergrund. Im Rahmen der bruchmechanischen Untersuchungen konnte der Einfluss von verschiedenen Strukturparametern aufgezeigt werden. Die Belastungen entlang der scharfen Kerben im Inneren der Stege ergaben sich dabei als weniger kritisch als entlang der Stegaußenseiten. Das Kriechverhalten des kohlenstoffgebundenen Aluminiumoxides bei Hochtemperatur konnte erfolgreich beschrieben und für Schaumstrukturen angewendet werden. Das vorgeschlagene Modell kann dabei sowohl für virtuell erzeugte Schaumstrukturen als auch für reale Schaumproben angepasst werden. Mithilfe von homogenisierten Materialmodellen basierend auf neuronalen Netzen ergab sich eine drastische Reduzierung der Rechenzeit für komplexe Filterstrukturen. Es ist dabei eine Berücksichtigung von Plastizität und Schädigung für das Kompaktmaterial möglich. / This thesis developed within the collaborative research centre SFB 920 deals with fracture mechanical analyses and the macroscopic description of open-cell ceramic foams considering the material behaviour of the bulk material by means of numerical simulations. In the centre of interest is the thermomechanical loading of such a structure during a casting process. Within the framework of fracture mechanical investigations, the influence of various structural parameters is demonstrated. The loads along the sharp notches inside the struts turned out to be less critical than along the outer surfaces of the struts. The creep behaviour of the carbon-bonded alumina at high temperature were successfully described and the mathematical description is applied to foam structures. The proposed model can be adapted for virtually generated foam structures as well as for real foam samples. Using homogenized material models based on neuronal networks, a drastic reduction of the computing time for complex filter structures was achieved. Meanwhile, it is possible to consider plasticity and damage effects for the bulk material.
314

Verbesserung der Performance von virtuellen Sensoren in totzeitbehafteten Prozessen

Dementyev, Alexander 17 October 2014 (has links)
Modellbasierte virtuelle Sensoren (VS) ermöglichen die Messung von qualitätsbestimmenden Prozessparametern (bzw. Hilfsregelgrößen) dort, wo eine direkte Messung zu teuer oder gar nicht möglich ist. Für die adaptiven VS, die ihr internes Prozessmodell nach Data-Driven-Methode bilden (z. B. durch die Benutzung künstlicher neuronaler Netze (KNN)), besteht das Problem der Abschätzung der Prädiktionsstabilität. Aktuelle Lösungsansätze lösen dieses Problem nur für wenige KNN-Typen und erfordern enormen Entwurfs- und Rechenaufwand. In dieser Arbeit wird eine alternative Methode vorgestellt, welche für eine breite Klasse von KNN gilt und keinen hohen Entwurfs- und Rechenaufwand erfordert. Die neue Methode wurde anhand realer Anwendungsbeispiele getestet und hat sehr gute Ergebnisse geliefert. Für die nicht adaptiven virtuellen Sensoren wurde eine aufwandsreduzierte Adaption nach Smith-Schema vorgeschlagen. Dieses Verfahren ermöglicht die Regelung totzeitbehafteter und zeitvarianter Prozesse mit VS in einem geschlossenen Regelkreis. Im Vergleich zu anderen Regelungsstrategien konnte damit vergleichbare Regelungsqualität bei einem deutlich geringeren Entwurfsaufwand erzielt werden. / Model-based virtual sensors allow the measurement of parameters critical for process quality where a direct measurement is too expensive or not at all possible. For the adaptive virtual sensors built after data-driven method (e.g., by use of an ANN model) there is a problem of the prediction stability. Current solutions attempt to solve this problem only for a few ANN types and require a very high development effort. In this dissertation a new method for the solution of this problem is suggested, which is valid for a wide class of the ANNs and requires no high development effort. The new method was tested on real application examples and has delivered very good results. For the non-adaptive virtual sensors a simple adaptation mechanism was suggested. This technique allows the control of dead-time and time-variant processes in closed loop. Besides, in comparison to other control strategies the comparable results were achieved with smaller development effort.
315

Entwicklung und Validierung eines Verfahrens zur Zustandsüberwachung des Reaktordruckbehälters während auslegungsüberschreitender Unfälle in Druckwasserreaktoren

Schmidt, Sebastian 14 February 2018 (has links)
Für den zielgerichteten Einsatz von präventiven und mitigativen Notfallmaßnahmen sowie zur Beurteilung ihrer Wirksamkeit während auslegungsüberschreitender Unfälle in Druckwasserreaktoren aber auch für Hinweise zum Störfallverlauf und für die Abschätzung der Auswirkungen auf die Anlagenumgebung müssen geeignete Störfallinstrumentierungen vorhanden sein. Insbesondere der Zustand des Reaktordruckbehälterinventars (RDB-Inventar) während der In-Vessel-Phase eines auslegungsüberschreitenden Unfalls lässt sich mit aktuellen Störfallinstrumentierungen nur stark eingeschränkt überwachen, wodurch die o. g. Forderungen nicht erfüllt werden können. Die vorliegende Arbeit beinhaltet detaillierte Untersuchungen für die Entwicklung einer Störfallinstrumentierung, welche eine durchgängige Zustandsüberwachung des RDB-Inventars während der In-Vessel-Phase eines auslegungsüberschreitenden Unfalls ermöglicht. Die Störfallinstrumentierung basiert auf der Messung und Klassifikation von unterschiedlichen Gammaflussverteilungen, welche während der In-Vessel-Phase außerhalb des Reaktordruckbehälters auftreten können. Ausgehend von der Analyse zum Stand von Wissenschaft und Technik wird der modell-basierte Ansatz für Structural Health Monitoring-Systeme genutzt, um eine grundlegende Vorgehensweise für die Entwicklung der Störfallinstrumentierung zu erarbeiten. Anschließend erfolgt eine detaillierte Analyse zu den Vorgängen während der In-Vessel-Phase und eine daraus abgeleitete Definition von Kernzuständen für einen generischen Kernschmelzunfall. Für die definierten Kernzustände werden mittels Simulationen (Monte-Carlo-Simulationen zum Gammastrahlungstransport in einem zu dieser Arbeit parallel laufenden Vorhaben) Gammaflüsse außerhalb des Reaktordruckbehälters berechnet. Die Simulationsergebnisse dienen dem Aufbau von Datenbasen für die Entwicklung und Analyse eines Modells zur Klassifikation von Gammaflussverteilungen. Für die Entwicklung des Klassifikationsmodells kommen drei diversitäre und unabhängig arbeitende Klassifikationsverfahren (Entscheidungsbaum, k-nächste-Nachbarn-Klassifikation, Multilayer Perzeptron) zur Anwendung, um die Identifikationsgenauigkeit und Robustheit der Störfallinstrumentierung zu erhöhen. Die abschließenden Betrachtungen umfassen die Validierung der Störfallinstrumentierung mittels eines Versuchstandes zur Erzeugung unterschiedlicher Gammaflussverteilungen. Im Ergebnis der Untersuchungen konnte die prinzipielle Funktionsweise der entwickelten Störfallinstrumentierung nachgewiesen werden. Unter der Voraussetzung, die Gültigkeit der definierten Kernzustände zu untermauern sowie weitere, nicht in dieser Arbeit betrachtete Kernschmelzszenarien mit in die Entwicklung der Störfallinstrumentierung einzubeziehen, steht somit insbesondere für zukünftige Kernkraftwerke mit Druckwasserreaktoren eine Möglichkeit für die messtechnische Überwachung des RDB-Inventars während auslegungsüberschreitender Unfälle bereit. Die Arbeit leistet einen wesentlichen Beitrag auf dem Gebiet der Reaktorsicherheitsforschung sowie für den sicheren Betrieb von kerntechnischen Anlagen.:1 Einleitung 2 Analyse zum Stand von Wissenschaft und Technik 2.1 Sicherheit in deutschen Kernkraftwerken mit Druckwasserreaktor 2.1.1 Mehrstufenkonzept 2.1.2 Störfallinstrumentierungen 2.2 Auslegungsüberschreitende Unfälle mit Kernschmelze in DWR 2.2.1 Auslösende Ereignisse 2.2.2 Grundlegender Ablauf eines auslegungsüberschreitenden Unfall mit Kernschmelze 2.3 Strahlungstechnik, Strahlungsmesstechnik 2.3.1 Grundlagen der Strahlungstechnik 2.3.2 Wechselwirkungen von Gammastrahlung mit Materie 2.3.3 Messung ionisierender Strahlung 2.4 Verfahren und Methoden der Zustandsüberwachung 2.4.1 Zustandsüberwachung 2.4.2 Structural Health Monitoring 2.4.3 Mustererkennung 2.4.4 Entscheidungsbäume 2.4.5 k-nächste-Nachbarn-Klassifikation 2.4.6 Künstliche neuronale Netze 2.5 Schlussfolgerungen aus der Analyse zum Stand von Wissenschaft und Technik 2.5.1 Zusammenfassung zum Kapitel 2 2.5.2 Zielstellung, Aufbau und Abgrenzung der Arbeit 3 Analyse der In-Vessel-Phase und Definition von Kernzuständen 3.1 Detaillierte Analyse der In-Vessel-Phase 3.1.1 Auftretende Temperaturbereiche 3.1.2 Vorgänge während der frühen In-Vessel-Phase 3.1.3 Vorgänge während der späten In-Vessel-Phase 3.1.4 Spaltproduktfreisetzung 3.2 Definition von Kernzuständen für einen generischen Kernschmelzunfall 3.3 Zusammenfassung zum Kapitel 3 4 Datenbasen zur Entwicklung und Analyse des Klassifikationsmodells 4.1 Beschreibung der Monte-Carlo-Simulationsmodell 4.2 Beschreibung der Simulationsergebnisse und Merkmalsextraktion 4.3 Datenbasis zur Entwicklung 4.4 Datenbasen zur Analyse 4.5 Zusammenfassung zum Kapitel 4 5 Entwicklung und Analyse des Klassifikationsmodells 5.1 Beschreibung des Klassifikationsmodells 5.2 Teilmodell 1 - Entscheidungsbaum 5.2.1 Entwicklung 5.2.2 Analyse der Identifikationsgenauigkeit 5.3 Teilmodell 3 - k-nächste-Nachbarn-Klassifikation 5.3.1 Entwicklung 5.3.2 Analyse der Identifikationsgenauigkeit 5.4 Teilmodell 3 - Multilayer Perzeptron 5.4.1 Trainings- und Testdatenbasis 5.4.2 Entwicklung 5.4.3 Analyse der Identifikationsgenauigkeit 5.5 Teilmodell 4 - Vergleichsalgorithmus 5.5.1 Entwicklung 5.5.2 Analyse der Identifikationsgenauigkeit 5.6 Analysen zur Robustheit des Klassifikationsmodells 5.6.1 Ausfall einzelner Gammastrahlungsdetektoren 5.6.2 Gleichzeitiger Ausfall mehrerer Gammastrahlungsdetektoren 5.7 Zusammenfassung und Schlussfolgerungen für das Kapitel 5 6 Validierung der Kernzustandsüberwachungsverfahren 6.1 Zielstellung und Vorgehensweise 6.2 Versuchstand zur Validierung 6.2.1 Aufbau 6.2.2 Funktionsweise 6.3 Anpassung der Kernzustandsüberwachungsverfahren an den Versuchsstand 6.4 Validierungsexperimente 6.4.1 Experiment 1 - Füllstandsänderungen 6.4.2 Experiment 2 - Quellenbewegungen 6.4.3 Experiment 3 - Füllstandsänderungen, Quellenbewegungen und Änderung von Profilkonturen 6.5 Zusammenfassung und Schlussfolgerungen für das Kapitel 6 7 Zusammenfassung und Ausblick
316

Neural-Symbolic Integration

Bader, Sebastian 05 October 2009 (has links)
In this thesis, we discuss different techniques to bridge the gap between two different approaches to artificial intelligence: the symbolic and the connectionist paradigm. Both approaches have quite contrasting advantages and disadvantages. Research in the area of neural-symbolic integration aims at bridging the gap between them. Starting from a human readable logic program, we construct connectionist systems, which behave equivalently. Afterwards, those systems can be trained, and later the refined knowledge be extracted.
317

Phonetische Transkription für ein multilinguales Sprachsynthesesystem

Hain, Horst-Udo 23 September 2004 (has links)
Die vorliegende Arbeit beschäftigt sich mit einem datengetriebenen Verfahren zur Graphem-Phonem-Konvertierung für ein Sprachsynthesesystem. Die Aufgabe besteht darin, die Aussprache für beliebige Wörter zu bestimmen, auch für solche Wörter, die nicht im Lexikon des Systems enthalten sind. Die Architektur an sich ist sprachenunabhängig, von der Sprache abhängig sind lediglich die Wissensquellen, die zur Laufzeit des Systems geladen werden. Die Erstellung von Wissensquellen für weitere Sprachen soll weitgehend automatisch und ohne Einsatz von Expertenwissen möglich sein. Expertenwissen kann verwendet werden, um die Ergebnisse zu verbessern, darf aber keine Voraussetzung sein. Für die Bestimmung der Transkription werden zwei neuronale Netze verwendet. Das erste Netz generiert aus der Buchstabenfolge des Wortes die zu realisierenden Laute einschließlich der Silbengrenzen, und das zweite bestimmt im Anschluß daran die Position der Wortbetonung. Diese Trennung hat den Vorteil, daß man für die Bestimmung des Wortakzentes das Wissen über die gesamte Lautfolge einbeziehen kann. Andere Verfahren, die die Transkription in einem Schritt bestimmen, haben das Problem, bereits zu Beginn des Wortes über den Akzent entscheiden zu müssen, obwohl die Aussprache des Wortes noch gar nicht feststeht. Zudem bietet die Trennung die Möglichkeit, zwei speziell auf die Anforderung zugeschnittene Netze zu trainieren. Die Besonderheit der hier verwendeten neuronalen Netze ist die Einführung einer Skalierungsschicht zwischen der eigentlichen Eingabe und der versteckten Schicht. Eingabe und Skalierungsschicht werden über eine Diagonalmatrix verbunden, wobei auf die Gewichte dieser Verbindung ein Weight Decay (Gewichtezerfall) angewendet wird. Damit erreicht man eine Bewertung der Eingabeinformation während des Trainings. Eingabeknoten mit einem großen Informationsgehalt werden verstärkt, während weniger interessante Knoten abgeschwächt werden. Das kann sogar soweit gehen, daß einzelne Knoten vollständig abgetrennt werden. Der Zweck dieser Verbindung ist, den Einfluß des Rauschens in den Trainingsdaten zu reduzieren. Durch das Ausblenden der unwichtigen Eingabewerte ist das Netz besser in der Lage, sich auf die wichtigen Daten zu konzentrieren. Das beschleunigt das Training und verbessert die erzielten Ergebnisse. In Verbindung mit einem schrittweisen Ausdünnen der Gewichte (Pruning) werden zudem störende oder unwichtige Verbindungen innerhalb der Netzwerkarchitektur gelöscht. Damit wird die Generalisierungsfähigkeit noch einmal erhöht. Die Aufbereitung der Lexika zur Generierung der Trainingsmuster für die neuronalen Netze wird ebenfalls automatisch durchgeführt. Dafür wird mit Hilfe der dynamischen Zeitanpassung (DTW) der optimale Pfad in einer Ebene gesucht, die auf der einen Koordinate durch die Buchstaben des Wortes und auf der anderen Koordinate durch die Lautfolge aufgespannt wird. Somit erhält man eine Zuordnung der Laute zu den Buchstaben. Aus diesen Zuordnungen werden die Muster für das Training der Netze generiert. Um die Transkriptionsergebnisse weiter zu verbessern, wurde ein hybrides Verfahren unter Verwendung der Lexika und der Netze entwickelt. Unbekannte Wörter werden zuerst in Bestandteile aus dem Lexikon zerlegt und die Lautfolgen dieser Teilwörter zur Gesamttranskription zusammengesetzt. Dabei werden Lücken zwischen den Teilwörtern durch die neuronalen Netze aufgefüllt. Dies ist allerdings nicht ohne weiteres möglich, da es zu Fehlern an den Schnittstellen zwischen den Teiltranskriptionen kommen kann. Dieses Problem wird mit Hilfe des Lexikons gelöst, das für die Generierung der Trainingsmuster aufbereitet wurde. Hier ist eine eindeutige Zuordnung der Laute zu den sie generierenden Buchstaben enthalten. Somit können die Laute an den Schnittstellen neu bewertet und Transkriptionsfehler vermieden werden. Die Verlagsausgabe dieser Dissertation erschien 2005 im w.e.b.-Universitätsverlag Dresden (ISBN 3-937672-76-1). / The topic of this thesis is a system which is able to perform a grapheme-to-phoneme conversion for several languages without changes in its architecture. This is achieved by separation of the language dependent knowledge bases from the run-time system. Main focus is an automated adaptation to new languages by generation of new knowledge bases without manual effort with a minimal requirement for additional information. The only source is a lexicon containing all the words together with their appropriate phonetic transcription. Additional knowledge can be used to improve or accelerate the adaptation process, but it must not be a prerequisite. Another requirement is a fully automatic process without manual interference or post-editing. This allows for the adaptation to a new language without even having a command of that language. The only precondition is the pronunciation dictionary which should be enough for the data-driven approach to learn a new language. The automatic adaptation process is divided into two parts. In the first step the lexicon is pre-processed to determine which grapheme sequence belongs to which phoneme. This is the basis for the generation of the training patterns for the data-driven learning algorithm. In the second part mapping rules are derived automatically which are finally used to create the phonetic transcription of any word, even if it not contained in the dictionary. Task is to have a generalisation process that can handle all words in a text that has to be read out by a text-to-speech system.
318

Prognose des Langzeitverhaltens von Textilbeton-Tragwerken mit rekurrenten neuronalen Netzen

Freitag, Steffen, Graf, Wolfgang, Kaliske, Michael 03 June 2009 (has links)
Zur Prognose des Langzeitverhaltens textilbetonverstärkter Tragwerke wird ein modellfreies Vorgehen auf Basis rekurrenter neuronaler Netze vorgestellt. Das Vorgehen ermöglicht die Prognose zeitveränderlicher Strukturantworten unter Berücksichtigung der gesamten Belastungsgeschichte. Mit unscharfen Größen aus Messungen an Versuchstragwerken werden rekurrente neuronale Netze trainiert. Anschließend ist die unscharfe Prognose des Tragverhaltens möglich.
319

Essays on monetary macroeconomics

Almosova, Anna 05 September 2019 (has links)
Diese Dissertation beschäftigt sich mit drei relevanten Aufgabebereichen einer Zentralbank und untersucht die makroökonomische Prognose, die Analyse der Geldpolitik in einem makroökonomischen Modell und die Analyse des Währungssystems. Jedes dieser Phänomene wird mit Hilfe des passenden Modells nach Nichtlinearitäten untersucht. Der erste Teil der Dissertation zeigt, dass nichtlineare rekurrente neuronale Netze, eine Methode aus dem Bereich Maschinelles Lernen, die Standard-Methoden übertreffen können und präzise Vorhersagen der Inflation in 1 bis 12 Monaten liefern können. Der zweiter Teil analysiert eine nichtlineare Formulierung der monetären Taylor-Regel. Anhand der Schätzung eines nichtlinearen DSGE Modells wird gezeigt, dass die Taylor-Regel in den USA asymmetrisch ist. Die Zentralbank ergreift stärkere Maßnahmen, wenn die Inflation höher ist als die Zielinflation, und reagiert weniger wenn die Inflation niedriger als die Zielinflation ist. Gleicherweise ist die Reaktion der monetären Politik stärker bei zu geringem Produktionswachstum als bei zu hohem. Der dritte Teil der Dissertation formuliert ein theoretisches Modell, das für eine Analyse der digitalen dezentralen Währungen verwendet werden kann. Es werden die Bedingungen bestimmt, unter denen der Wettbewerb zwischen der Währung der Zentralbank und den digitalen Währungen einige Beschränkungen für die Geldpolitik darstellt. / This thesis addresses three topics that are relevant for the central bank policy design. It analyzes forecasting of the macroeconomic time series, accurate monetary policy formulation in a general equilibrium macroeconomic model and monitoring of the novel developments in the monetary system. All these issues are analyzed in a nonlinear framework with the help of a macroeconomic model. The first part of the thesis shows that nonlinear recurrent neural networks – a method from the machine learning literature – outperforms the usual benchmark forecasting models and delivers accurate inflation predictions for 1 to 12 months ahead. The second part of the thesis analyzes a nonlinear formulation of the Taylor rule. With the help of the nonlinear Bayesian estimation of a DSGE model it shows that the Taylor rule in the US is asymmetric. The central bank reacts stronger to inflation when it is above the target than when it is below the target. Similarly, the reaction to the output growth rate is stronger when the output growth is too weak than when it is too strong. The last part of the thesis develops a theoretical model that is suitable for the analysis of decentralized digital currencies. The model is used to derive the conditions, under which the competition between digital and fiat currencies imposes restrictions on the monetary policy design.
320

Künstliche neuronale Netze im leistungsbasierten Luftverkehrsmanagement

Reitmann, Stefan 30 November 2020 (has links)
Der Luftverkehr stellt ein komplexes Gesamtsystem dar, in welchem eine Prozessoptimierung aufgrund zahlreicher und verschiedenartiger Arbeitsabläufe verschiedener Unternehmen nur durch eine übergeordnete Leistungsbewertung möglich ist. Hierfür wurde im Bereich des leistungsbasierten Flughafenmanagements - sowohl auf wissenschaftlicher, als auch industrieller Ebene - bereits eine hohe Zahl individueller Lösungsansätze entwickelt, die jedoch aufgrund ihrer unterschiedlichen Struktur schwer zu vergleichende Ergebnisse hervorbringen. Des Weiteren werden Wechselbeziehungen zwischen ausschließlich eindimensional betrachteten Leistungsindikatoren, welche die verschiedenen Prozessschritte einzeln abbilden, außer Acht gelassen - die Dynamik des Systems spiegelt sich auf diese Art nicht auf Datenebene wider. Abhängigkeiten beeinflussen jedoch maßgeblich das Bewertungsergebnis und sind damit bei der Implementierung von Optimierungsstrategien innerhalb heutiger Konzepte essentiell. Der Kern dieser Dissertation umfasst die erweiterte datenbasierte Betrachtung des Luftverkehrssystems innerhalb des leistungsbasierten Ansatzes und einer damit einhergehenden Entkopplung von Modellierungsansätzen. Dies bedeutet, dass das betrachtete Luftverkehrssystem nur durch Leistungskennwerte beschrieben werden soll (z. B. Verspätungen, meteorologische Messungen). Der Einsatz künstlicher neuronaler Netze erhöht die Möglichkeiten zur Abbildung und Erfassung nicht-linearer und abhängiger Wert-diskreter Zeitreihen, welche im ständigen Vergleichsprozess wesentlich für die Strategiebildung sind. Die Datenquellen beziehen sich einerseits auf mikroskopische Analysen im Bereich des Boardings und damit verbundenen wissenschaftlichen Ausarbeitungen, andererseits auf die Beispielflughäfen Flughafen Hamburg (HAM) und Gatwick Airport (LGW) der Jahre 2012 - 2015 im makroskopischen Fokus. Die Implementierung des Wetters erfolgt über aggregierte meteorologische Kennzahlen, welche auf realen Wettermeldungen des entsprechenden Zeitraums beruhen. Von der Wahl und Definition eines Systems (Boarding, HAM und LGW) ausgehend, erfolgt eine geeignete Datenaggregation, welche Daten zur anschließenden Wissensgenerierung bereitstellt und damit Optimierungsansätze ermöglicht. Im Sinne des wachsenden Interesses der Forschung im Bereich des leistungsbasierten Luftverkehrsmanagements und der heutigen Wichtigkeit von Entscheidungsunterstützungssystemen bei der Strategieentwicklung, fokussiert sich diese Arbeit damit auf die Durchführung multivariater nicht-linearer Zeitreihenanalyse und -vorhersage mit neuronalen Netzen. Die damit einhergehende Nachvollziehbarkeit solcher Datenreihen liefert Möglichkeiten zur Systemidentifikation (datenbasiertes Erlernen der Systemdynamik). Das identifizierte Systemabbild des Luftverkehrs kann folglich für Simulation bekannter Eingabegrößen, als auch für die optimierte Kontrolle des Systems herangezogen werden und umfasst damit wesentliches Erweiterungspotential für heutige Management-Konzepte, um Entwicklungen hin zu einem kooperativen Betrieb zu unterstützen. Ableitend aus der Differenzierung in mehrere gekoppelte Bearbeitungsschritte innerhalb dieser Arbeit, erfolgt eine Fokussierung auf drei Kernfragen: a) Ist eine auf Leistungskennwerten des Luftverkehrs basierende Systemidentifikation mit derzeitigen Paradigmen neuronaler Netze möglich? b) Welche Einschränkungen sind gemäß des unterschiedlichen Charakters der Datensätze zu beachten und wie kann diesen durch eine, das Training der neuronalen Netze vorbereitenden, Datenstrukturanalyse und -Anpassung entgegengewirkt werden? c) Ist auf Basis der trainierten Netze eine erweiterte Optimierung und Vorhersage innerhalb vorhandener Strukturen des leistungsbasierten Luftverkehrsmanagements möglich?:I Grundlagen 1 Leistungsbasiertes Luftverkehrsmanagement 1.1 Allgemeine Definitionen & Begrifflichkeiten 1.2 Leistungsbewertungsrahmenwerke des Luftverkehrs 1.2.1 Interdependenzen von Leistungsindikatoren 1.2.2 Einflussfaktoren auf die Leistungsfähigkeit von Verkehrsflughäfen 1.2.3 Flugmeteorologische Datenaggregation 1.3 Grundkonzepte leistungsbasierten Luftverkehrsmanagements 1.3.1 Airport Collaborative Decision Making (A-CDM) 1.3.2 Total Airport Management (TAM) 1.3.3 Performance Based Airport Management (PBAM) 2 Künstliche neuronale Netze 2.1 Grundverfahren der Computational Intelligence 2.2 Biologische neuronale Netze 2.3 Topologie & Bestandteile künstlicher neuronaler Netze 2.4 Lernvorgang & Fehlerevaluierung 2.5 Netzparadigmen 2.5.1 Feedforward Netzwerke 2.5.2 Rekurrente (rückgekoppelte) Netzwerke 2.5.3 Faltende Netzwerke 2.6 Taxonomie der Zeitreihenverarbeitung mit künstlichen neuronalen Netzen 2.6.1 Zeitreihenregression 2.6.2 Zeitreihenklassifikation II Anwendung künstlicher neuronaler Netze im Luftverkehr 3 Methodische Konzeption 3.1 Datenbasierte Erfassung des Luftverkehrssystems 3.1.1 Prinzip des virtuellen Luftverkehrssystems 3.1.2 Systemidentifikation, Kontrolle & Simulation 3.2 Anwendungsgebiet Turnaround Management 3.2.1 Status Quo 3.2.2 Stochastische Boardingsimulation & Aggregationsmetrik 3.3 Anwendungsgebiet Air Traffic Flow Management 3.3.1 Status Quo 3.3.2 Datengrundlage der Flughäfen Hamburg & London Gatwick 4 Systemidentifikation mit künstlichen neuronalen Netzen 4.1 Modularisierung der Systemidentifikation 4.2 Problemidentifikation & Systemauswahl 4.3 Datenstrukturanalyse & -anpassung 4.3.1 Datenvoranalyse 4.3.2 Datenvorverarbeitung & Fehlerbereinigung 4.3.3 Datenanpassung für maschinelles Lernen 4.4 Paradigmenauswahl & Modellinitialisierung 4.5 Modellanwendung & -Überwachung 4.6 Nachgelagerte Analyse & Modellanpassung 5 Simulation & Kontrolle durch künstliche neuronale Netze 5.1 Sequenzprediktion zur Vorhersage bei bekannten Eingabemengen 5.1.1 Fehlerfortschreitung & Prognoseevaluierung 5.1.2 Robustheitsschätzung der Vorhersage 5.2 Nutzung des Modells als adaptive Kontrollstruktur 5.2.1 Extraktion von Zusammenhängen der Eingabegrößen 5.2.2 Metaheuristische Optimierung der Eingabemengen III Anwendung 6 Anwendungsgebiet Boarding als Teil des Turnaround-Prozesses 6.1 Systemidentifikation des Boarding-Subsystems 6.1.1 Datenstrukturanalyse 6.1.2 Experimenteller Aufbau & Modellanwendung 6.2 Simulation & Kontrolle des Boarding-Subsystems 6.2.1 Vorhersage des Boardingvorgangs unter verschiedenen Randbedingungen 6.2.2 Robustheitsprüfung der adaptiven Kontrollstruktur 6.2.3 Ableitung von Handlungsempfehlungen innerhalb des Prozesses 7 Anwendungsgebiet Air Traffic Flow Management 7.1 Systemidentifikation des Flugbetriebs in Hamburg & London Gatwick 7.1.1 Datenstrukturanalyse 7.1.2 Experimenteller Aufbau & Modellanwendung 7.2 Simulation & Kontrolle des Flugbetriebs in Hamburg & London Gatwick 7.2.1 Vorhersage von Verspätungen unter Berücksichtigung des Wetters 7.2.2 Robustheitsprüfung der adaptiven Kontrollstruktur 7.2.3 Eingabeempfehlungen zur Minimierung der Gesamtverspätung 8 Schlussbetrachtungen 8.1 Zusammenfassende Auswertung der Basisszenarien 8.2 Ausblick

Page generated in 0.055 seconds