Spelling suggestions: "subject:"oon compaction"" "subject:"soon compaction""
61 |
Fabrication Of Aluminum Matrix Particulate Composites By Compaction And SinteringLi, Wei 13 December 2008 (has links)
With the possession of extremely broad unique properties, particulate reinforced aluminum composites are very attractive in diverse applications. Aluminum matrix particulate composites are challenging to work with. A single pressing and sintering process was used to fabricate the reinforced aluminum composites in this study. The key advantage of this method is its comparative low expense. However, abrasive reinforcement powders can lead to shorter tool life. To study the fundamental wear mechanisms during the die compaction process, a new method was developed and combined with experiments to quantify tool wear. Automatic die compaction experiments and tribological experiments are employed in this study. The tribologcial experiments consist of a modified pin-onlat test and a modified loop test. Mass loss of tools was recorded during all the experiments. A new tool wear model was used in this study to investigate effect of different hard phase and different lubricant level on die compaction process.
|
62 |
Vacuum Assisted Resin Transfer Molding (VARTM): Model Development and VerificationSong, Xiaolan 24 April 2003 (has links)
In this investigation, a comprehensive Vacuum Assisted Resin Transfer Molding (VARTM) process simulation model was developed and verified. The model incorporates resin flow through the preform, compaction and relaxation of the preform, and viscosity and cure kinetics of the resin. The computer model can be used to analyze the resin flow details, track the thickness change of the preform, predict the total infiltration time and final fiber volume fraction of the parts, and determine whether the resin could completely infiltrate and uniformly wet out the preform.
Flow of resin through the preform is modeled as flow through porous media. Darcy's law combined with the continuity equation for an incompressible Newtonian fluid forms the basis of the flow model. During the infiltration process, it is well accepted that the total pressure is shared by the resin pressure and the pressure supported by the fiber network. With the progression of the resin, the net pressure applied to the preform decreases as a result of increasing local resin pressure. This leads to the springback of the preform, and is called the springback mechanism. On the other side, the lubrication effect of the resin causes the rearrangement of the fiber network and an increase in the preform compaction. This is called the wetting compaction mechanism. The thickness change of the preform is determined by the relative magnitude of the springback and wetting deformation mechanisms. In the compaction model, the transverse equilibrium equation is used to calculate the net compaction pressure applied to the preform, and the compaction test results are fitted to give the compressive constitutive law of the preform. The Finite Element/Control Volume (FE/CV) method is adopted to find the flow front location and the fluid pressure. The code features the ability of simultaneous integration of 1-D, 2-D and 3-D element types in a single simulation, and thus enables efficient modeling of the flow in complex mold geometries.
VARTM of two flat composite panels was conducted to verify the simulation model. The composite panels were fabricated using the SAERTEX multi-axial warp knit carbon fiber fabric and SI-ZG-5A epoxy resin. Panel 1 contained one stack of the carbon fabric, and Panel 2 contained four stacks of the fabric. The parameters verified included the flow front location and preform thickness change. For Panel 1, the flow front locations were accurately predicted while the predicted resin infiltration was much slower than measured for Panel 2. The disagreement is attributed to the permeability model used in the simulation, which failed to consider the interface flow in the unstitched preform containing more than one stack of the fabric under very low compaction force. The predicted transverse displacements agree well with the experimental measurement qualitatively, but not quantitatively. The reasons for the differences were discussed, and further investigations are recommended to develop a more accurate compaction model. The simulation code was also used to investigate the VARTM of a new form of sandwich structure with through-the-thickness reinforcements, which is being considered for use in primary aircraft structure. The infiltration of three foam core sandwich preforms with different stitch densities was studied. The objective of the study was to determine whether the preforms could be completely infiltrated and how the stitch density affects the infiltration process. The visualization experiments were conducted to verify the simulation. The model accurately predicted the resin infiltration patterns. The calculated filling times underpredicted experimental times by 4 to 14%. The model revealed the resin flow details and found that increasing the stitch spacing shortens the total filling time, but increases the nonuniformity of the flow front shape. Extreme nonuniformity of the flow front shape could result in the formation of the voids. / Ph. D.
|
63 |
Changes in Oriented Strandboard Permeability During Hot-PressingHood, Jonathan Patrick 05 August 2004 (has links)
Convective heat transfer during hot pressing in wood-based composite panel manufacturing is widely accepted as the most important means of heat transport for resin curing. The rate of convective heat transfer to the panel core is controlled by its permeability. Permeability in the plane of the panel also controls the flow of vapor to the panel edges, thereby influencing the potential for panel "blowing".
This research considers how flake thickness, flake alignment and changing mat density during hot-pressing influences OSB mat permeability, through its thickness and in the plane of the panel. Some previous research exists but it fails to address the affects of horizontal and vertical density gradients as well as flake alignment.
An apparatus was designed to allow cold pressing of aligned flakes to desired densities while enabling permeability measurements through the mat thickness. An additional apparatus was designed to allow the measuring of permeability in the plane of the mat. These designs permitted permeability measurements in mats that had no vertical density gradient, allowing for the direct study of permeability versus density (compaction ratio).
Superficial permeability was determined using Darcy's law and for each sample, multiple readings were made at five different pressure differentials. Permeability through the mat thickness was highly dependent on compaction ratio and to a lesser extent flake thickness. As the compaction ratio is increased, the initial reduction in permeability is severe, once higher compaction ratios are achieved the reduction in permeability is less pronounced. Permeability decreased with decreasing flake thickness. Permeability in the plane of the mat decreases with increasing compaction ratio but in a less severe manner than through the mat thickness. In this case, the permeability-compaction ratio relationship appears linear in nature. Again, permeability decreases with decreasing flake thickness. / Master of Science
|
64 |
Development of Laboratory to Field Shift Factors for Hot-Mix Asphalt Resilient ModulusKaticha, Samer Wehbe 28 January 2004 (has links)
Resilient moduli of different surface mixes placed at the Virginia Smart Road were determined. Testing was performed on Field cores (F/F) and laboratory-compacted plant mixed (F/L), laboratory mixed and compacted per field design (L/L), and laboratory designed, mixed, and compacted (D/L) specimens. The applied load was chosen to induce a strain ranging between 150 and 500 microstrains. Two sizes of laboratory compacted specimens (100-mm in diameter and 62.5-mm-thick and 150-mm in diameter and 76.5-mm-thick) were tested to investigate the effect of specimen size on the resilient modulus. At 5°C, the measured resilient moduli for both specimen sizes were similar. However, the specimen size has an effect on the measured resilient modulus at 25 and 40°C, with larger specimens having lower resilient modulus. At 5°C, HMA behaves as an elastic material; correcting for the specimen size using Roque and Buttlar's correction factors is applicable. However, at higher temperatures, HMA behavior becomes relatively more viscous. Hence, erroneous resilient modulus values could result when elastic analysis is used. In addition, due to difference in relative thickness between the 100- and 150-mm diameter specimens, the viscous flow at high temperature may be different. In general, both specimen sizes showed the same variation in measurements. Resilient modulus results obtained from F/L specimens were consistently higher than those obtained from F/F specimens. This could be due to the difference in the volumetric properties of both mixes; where F/F specimens had greater air voids content than F/L specimens. A compaction shift factor of 1.45 to 1.50 between the F/F and F/L specimens was introduced. The load was found to have no effect on resilient modulus under the conditions investigated. However, the resilient modulus was affected by the load pulse duration. The testing was performed at a 0.1s and 0.03s load pulses. The resilient modulus increased with the decrease of the load pulse duration at temperatures of 25°C and 40°C, while it increased at 5°C. This could be due to the difference in specimen conditioning performed at the two different load pulses. Finally, a model to predict HMA resilient modulus from HMA volumetric properties was developed. The model was tested for its fitting as well as predicting capabilities. The average variability between the measured and predicted resilient moduli was comparable to the average variability within the measured resilient moduli. / Master of Science
|
65 |
Effect of compaction pressure on consolidation behaviour of unsaturated silty soilEstabragh, A.R., Javadi, Akbar A., Boot, John C. January 2004 (has links)
Yes / The effect of compaction pressure on subsequent soil behaviour during isotropic consolidation has been investigated
by conducting controlled-suction triaxial tests on samples of an unsaturated compacted silty soil. A comprehensive
set of laboratory experiments was carried out in a double-walled triaxial apparatus on samples of unsaturated
soil that were prepared using two different compaction pressures. The axis translation technique was used for creating
the desired suctions in the samples. In the experiments, the soil samples were subjected to isotropic consolidation under
constant suctions. The results show that different compaction pressures produce different fabrics in a soil and therefore
affect the behaviour of the soil. The results also show that the value of yield stress and the location of the
loading¿collapse (LC) yield curve are functions of soil fabric. Furthermore, it is shown that the slopes of normal consolidation
lines for densely and loosely compacted samples differ in unsaturated conditions but are the same in saturated
soils. A comparison is made between the behaviour of the dense and loose samples, and the difference in the
behaviour is explained.
|
66 |
Etude des propriétés biomécaniques et de la capacité de vie symbiotique des racines d’arbres d’Acacia senegal Willd et de Prosopis juliflora DCBa, El Hadji Maodo 18 December 2008 (has links)
Le Sénégal, pays aride, connait un effet de sécheresse croissant. Le pays est confronté à un problème d’ensablement, de perte de fertilité et de compaction des sols. Des plants d’A. senegal et de P. juliflora en association ou non avec les microorganismes sont étudiés pour savoir en quoi ces espèces peuvent contribuer à la fixation des dunes mouvants et à l’amélioration de la productivité des terres. Des plants inoculés aux champignons mycorhiziens et au Rhizobium sont plantés à Sangalkam, Bandia et Bambey pour être récoltés un an après et analysés. Une autre expérience montée en serre a consisté à faire pousser les mêmes espèces sur le même type de sol à différents niveaux de compaction avec un tiers du lot occupé par les plants inoculés. Les résultats ont montré que le taux de mycorhisation atteint son pic sur sols pauvres en phosphore. L’inoculation a augmenté la production de biomasse tout en réduisant la taille des vaisseaux du bois racinaire. Elle augmente aussi le % de cellulose en fonction du diamètre racinaire et de l’âge. % qui augmente avec la résistance à la traction de la racine, source de meilleur ancrage et de résistance à l’arrachement. Une augmentation du niveau de compaction du sol diminue significativement le taux de mycorhisation et le nombre de nodule des racines. Elle favorise les racines fines au détriment des grosses racines. Ceci affecte positivement l’architecture racinaire au profit d’un meilleur ancrage. Le P. juliflora est mieux pour la lutte contre l’érosion éolienne l’ensablement et la perte de fertilité dans la zone des Niayes. L’A. senegal peut contribuer à l’amélioration de la fertilité tout en adaptant son système racinaire face à la compaction du sol. / An increasing drought effect is known in Senegal, arid country who is confronted to a silting problem, a decline in overall land fertility and soils compaction. Seedling of A. senegal and P. juliflora in association or no with microorganism are studied to know some what these species can contribute to the moving dune fixing and improvement land productivity. Seedling inoculated to mycorrhizas and Rhizobium are planted in Sangalkam, Bandia and Bambey and are harvested one year after for analyzed. Another experience in greenhouse consisted to grow up the same species on the same type of soil with different levels of compaction and a share occupied by inoculated seedlings. Results showed that the rate of mycorhisation reached his peak on soils poor in phosphorus. The inoculation increased the production of biomass while reducing the size of root wood vessels. She also increases it % of cellulose according to root diameter and age. % that increases with the root tensile strength, spring of better anchorage and resistance of extortion. An increase of soil compaction level decreases, meaningfully, the rate of mycorhisation and the number of root nodule. She favored the fine roots to detriment of thick roots. She affects positively root’s morphology in aid of better anchorage. P. juliflora is better for the struggle against the wind erosion the silting and loss of fertility in the Niayes area. A. senegal can contribute to the improvement of fertility while adapting its root system facing soil compaction.
|
67 |
The Effects of Fill-Nonuniformities on the Densified States of Cylindrical Green P/M CompactsGaboriault Jr., Edward M. 28 May 2003 (has links)
"We focus attention on single-punch compaction of metal powders in cylindrical dies. In one case, we consider solid cylindrical compacts, and take the die walls to be frictionless in order to isolate the effects of initial nonuniformities in powder fill on the final green density distribution of the compact. First, a model is introduced in which the die is filled with n distinct powders that occupy concentric annular regions within the die. The model requires that the balance of mass, the balance of momentum, and a realistic equation of state be satisfied in each region, and includes a plausible constitutive relation that relates the induced radial pressure in each powder region to the corresponding axial pressure and the relative movements of the interfaces that confine the region. For specified powder properties, the model predicts the movements of the interface between the powders, the final density in each region, the pressure maintained in each region, and the total compaction load required. In the special case of two powders (n=2), we predict how the radial movement of the single interface depends on the mismatch between the properties of the two powders. For large values of n, and for powder properties that change gradually from one powder to the next, the model approximates a single powder filled nonuniformly in the die. Finally, a model is developed for a single powder with continuously varying powder properties. Formally, the model may be obtained by taking the limit of the n-powder model as n becomes unbounded. Employing the continuous model, we determine how nonuniformities in initial fill density can be offset by nonuniformities in other powder properties to yield perfectly uniform green densities. In a second case, we consider axisymmetric, hollow, cylindrical compacts, and include the effects of friction at the die wall and the core rod. The ratio of the induced radial pressure to the applied axial pressure is assumed to be constant throughout the compaction, and Coulomb friction acts between the powder and the die wall as well as between the powder and the core rod. We derive a closed form solution for the axial and radial variation of the axial pressure, radial pressure, and shear stress throughout the compact. This solution is combined with a plausible equation of state to predict the final green density distribution and the variation of applied load throughout the compact."
|
68 |
Étude critique de quelques techniques expérimentales d’évaluation de la coulabilité des poudres / Critical review of some experimental assessment devices of powders flowabilitySaker, Assia 17 December 2018 (has links)
Dans les secteurs industriels tels que l’industrie chimique, pharmaceutique ou agro-alimentaire une faible aptitude à l’écoulement des poudres est souvent à l’origine du mauvais fonctionnement d’un procédé. Une mauvaise coulabilité peut ainsi entrainer le blocage de poudres dans un silo, des problématiques de dosages et de remplissage ou encore une détérioration de la qualité du produit final. Pour assurer un bon fonctionnement du procédé, il est donc nécessaire et essentiel d’évaluer la coulabilité de poudres utilisées. Pour cela, plusieurs techniques expérimentales telles que les dispositifs de mesure d’angle, les cellules de cisaillement, les dispositifs de tassement de poudre peuvent être utilisées. Des indices de coulabilité sont alors définis permettant de classer les poudres selon la qualité de l’écoulement. Des essais expérimentaux ont été menés sur plusieurs types de poudres et les premiers résultats ont montré que le passage d’une technique d’évaluation à une autre peut modifier, voire inverser le classement de la coulabilité des poudres. En effet, selon les techniques étudiées les poudres sont soumises à des sollicitations mécaniques différentes et donc le choix de la technique doit être adapté au cas réel d’étude. Dans ce travail, nous nous sommes intéressé plus particulièrement au cas de l’évaluation de l’écoulement de poudres à partir de dispositifs de compaction. Le travail réalisé a montré que les paramètres dynamiques (amplitude et fréquence de chocs) influencent énormément le classement de la coulabilité des poudres. A partir d’une approche énergétique, il a été montré qu’une évaluation et quantification de la coulabilité à partir du rapport d’Hausner ne peut être donnée par une technique de compaction que si celle-ci permet d’atteindre une valeur d’énergie nécessaire à l’obtention d’une compaction maximale des particules. Enfin, une étude de mise en œuvre des techniques d’évaluation de la coulabilité a été réalisée dans le domaine de la formulation en s’intéressant à l’évaluation quantitative de l’influence d’un agent d’écoulement / In industrial sectors, such as chemical, pharmaceutical or food industries, poor flowability of powders is often the causes of process malfunction. Poor flowability can lead to the blocking of powders in a silo, dosing and filling problems, or even bad quality on final product. To ensure proper process operation, it is therefore necessary and essential to evaluate the flowability of powders used. For this purpose, several experimental techniques such as angle of repose devices, shear cells or powder packing devices can be used. Flowability indices can then be defined in order to classify the powders according to the flow quality. Experimental tests have been carried out on several types of powders and the first results have shown that the transition from one technique to another can modify or even reverse the classification of the powder flowability. Indeed, according to the techniques studied, powders are subjected to different mechanical stresses and therefore the choice of the technique must be adapted to the real case of study. In this work, we were particularly interested to the evaluation of powders flowability from compaction devices. The work carried out has shown that the dynamic parameters (amplitude and frequency of taps) greatly influence the classification of powders flowability. From an energy approach, it has been shown that the evaluation of the flowability from Hausner ratio can be given by a compaction technique only if it achieves a value of energy required to obtain a maximal compaction of the particles. Finally, an implementation study of flowability evaluation techniques was carried out in the field of formulation by focusing on the quantitative evaluation of the influence of a glidant
|
69 |
Compaction mechanism to reduce test pattern counts and segmented delay fault testing for path delay faultsJha, Sharada 01 May 2013 (has links)
With rapid advancement in science and technology and decreasing feature size of transistors, the complexity of VLSI designs is constantly increasing. With increasing density and complexity of the designs, the probability of occurrence of defects also increases. Therefore testing of designs becomes essential in order to guarantee fault-free operation of devices.
Testing of VLSI designs involves generation of test patterns, test pattern application and identification of defects in design. In case of scan based designs, the test set size directly impacts the test application time which is determined by the number of memory elements in the design and the test storage requirements. There are various methods in literature which are used to address the issue of large test set size classified as static or dynamic compaction methods depending on whether the test compaction algorithm is performed as a post-processing step after test generation or is integrated within the test generation. In general, there is a trade-off between the test compaction achievable and the run-time. Methods which are computationally intensive might provide better compaction, however, might have longer run times owing to the complexity of the algorithm.
In the first part of the thesis we address the problem of large test set size in partially scanned designs by proposing an incremental dynamic compaction method. Typically, the fault coverage curve of designs ramp up very quickly in the beginning and later slows down and ultimately the curve flattens towards the tail of the curve. In the initial phase of test generation a greedy compaction method is used because initially there are easy-to-detect faults and the scope for compaction is better. However, in the later portion of the curve, there are hard-to-detect faults which affect compaction and we propose to use a dynamic compaction approach. We propose a novel mechanism to identify redundant faults during dynamic compaction to avoid targeting them later. The effectiveness of method is demonstrated on industrial designs and test size reduction of 30% is achieved.
As the device complexity is increasing, delay defects are also increasing. Speed path debug is necessary in order to meet performance requirements. Speed paths are the frequency limiting paths in a design identified during debug. Speed paths can be tested using functional patterns, transition n-detect patterns or path delay patterns. However, usage of functional patterns for speed path debug is expensive because generation of functional patterns is expensive and the application cost is also high because the number of patterns is large and requires functional testers.
In the second part of the dissertation we propose a simple path sensitization approach that can be used to generate pseudo-robust tests, which are near robust tests and can be used for designs that have multiple clock domains. The fault coverage for path delay fault APTG can be further improved by dividing the paths that are not testable under pseudo robust conditions, into shorter sub-paths. The effectiveness of the method is demonstrated on industrial designs.
|
70 |
Compaction Effects on Uniformity, Moisture Diffusion, and Mechanical Properties of Asphalt PavementsKassem, Emad Abdel-Rahman Ahmed 2008 December 1900 (has links)
Field compaction of asphalt mixtures is an important process that influences
performance of asphalt pavements; however there is very little effort devoted to evaluate
the influence of compaction on the uniformity and properties of asphalt mixtures. The
first part of this study evaluated relationships between different field compaction patterns
and the uniformity of air void distribution in asphalt pavements. A number of projects
with different asphalt mixture types were compacted, and cores were taken at different
locations from these projects. The X-ray Computed Tomography (X-ray CT) system was
used to capture the air void distributions in these cores. The analysis results have revealed
that the uniformity of air void distribution is highly related to the compaction pattern and
the sequence of different compaction equipment. More importantly, the efficiency of
compaction (reducing air voids) at a point was found to be a function of the location of
this point with respect to the compaction roller width. The results in this study supported
the development of the "Compaction Index (CI)," which quantifies the degree of field
compaction. The CI is a function of the number of passes at a point and the position of
the point with respect to the compaction roller width. This index was found to correlate
reasonably well with percent air voids in the pavement. The CI calculated from field
compaction was also related to the slope of the compaction curve obtained from the
Superpave gyratory compactor. This relationship offers the opportunity to predict field
compactability based on laboratory measurements. The compaction of longitudinal joints
was investigated, and recommendations were put forward to improve joint compaction.
The air void distributions in gyratory specimens were related to the mixture mechanical
properties measured using the Overlay and Hamburg tests. The second part of this study focused on studying the relationship between air
void distribution and moisture diffusion. A laboratory test protocol was developed to
measure the diffusion coefficient of asphalt mixtures. This important property has not
measured before. The results revealed that the air void phase within the asphalt mixtures
controls the rate of moisture diffusion. The measured diffusion coefficients correlated
well with the percent and size of connected air voids. The measured diffusion coefficient
is a necessary parameter in modeling moisture transport and predicting moisture damage
in asphalt mixtures.
The last part of this study investigated the resistance of asphalt mixtures with
different percent air voids to moisture damage by using experimental methods and a
fracture mechanics approach that accounts for fundamental material properties.
|
Page generated in 0.1054 seconds