Spelling suggestions: "subject:"nonfouling"" "subject:"nonbiofouling""
71 |
Investigation of effect of dynamic operational conditions on membrane fouling in a membrane enhanced biological phosphorus removal processAbdullah, Syed 05 1900 (has links)
The membrane bioreactor (MBR) is becoming increasingly popular for wastewater treatment, mainly due to its capability of producing high quality effluent with a relatively small footprint. However, high plant maintenance and operating costs due to membrane fouling limit the wide spread application of MBRs. Membrane fouling generally depends on the interactions between the membrane and, the activated sludge mixed liquor, which in turn, are affected by the chosen operating conditions. The present research study aimed to explore the process performance and membrane fouling in the membrane enhanced biological phosphorus removal (MEBPR) process under different operating conditions by, (1) comparing two MEBPRs operated in parallel, one with constant inflow and another with a variable inflow, and by, (2) operating the MEBPRs with different solids retention times (SRT).
On-line filtration experiments were conducted simultaneously in both MEBPR systems by using test membrane modules. From the transmembrane pressure (TMP) data of the test membrane modules, it was revealed that fouling propensities of the MEBPR mixed liquors were similar in both parallel reactors under the operating conditions applied, although the fouling propensity of the aerobic mixed liquors of both reactors increased when the SRT of the reactors was reduced.
Routinely monitored reactor performance data suggest that an MEBPR process with a varying inflow (dynamic operating condition) performs similarly to an MEBPR process with steady operating conditions at SRTs of 10 days and 20 days. Mixed liquor characterization tests were conducted, including critical flux, capillary suction time (CST), time to filter (TTF) and, bound and soluble extracellular polymeric substances (EPS) were quantified, to evaluate their role on membrane fouling. The tests results suggest that the inflow variation in an MEBPR process did not make a significant difference in any of the measured parameters.
With decreased SRT, an increase in the concentrations of EPS was observed, especially the bound protein, and the bound and soluble humic-like substances. This suggests that these components of activated sludge mixed liquors may be related to membrane fouling. No clear relationship was observed between membrane fouling and other measured parameters, including critical flux, normalized CST and normalized TTF.
|
72 |
Fouling characteristics of a desalted crude oilLin, Dah-cheng 24 August 1990 (has links)
The fouling characteristics of a desalted crude oil were investigated in a systematic
investigation. There are two main parts in this study, the dry bulk tests (dehydrated crude
oil) and the wet bulk tests (to which desalter brine was added). Three barrels of desalted
crude oil provided by Amoco Oil Company were studied.
For the dry bulk tests, no brine was added to the crude oil. The effects of fluid
velocity and surface temperature on fouling were investigated. The higher the surface
temperature the greater the fouling was observed. Fouling decreased with an increase of
fluid velocity. Fluid velocity had a stronger effect on fouling at low surface temperatures
than at high surface temperatures. It was also observed that the fouling behavior of crude
oil depended on small difference in composition. The threshold surface temperatures for
the initiation of fouling were 400-450 °F (3.0 ft/sec), 525-550 °F (5.5 ft/sec), 550-600
°F (8.0 ft/sec) and about 600 °F (10.0 ft/sec) for Barrel No. 2 and Barrel No. 3. For
Barrel No. 1 however, the threshold surface temperatures were about 550 °F (3.0 ft/sec)
and 600 °F (5.5 ft/sec).
For the wet bulk tests, a certain amount desalter brine (weight percentage = 0.8%)
was added to the crude oil for each run. The effects of fluid velocity, surface temperature
and the presence of brine on fouling were investigated. Higher surface temperature
enhanced fouling considerably. Fouling was reduced as fluid velocity was increased. It
was shown that brine had a strong effect on fouling. No fouling occurred for velocities of
5.5 and 8.0 ft/sec at a surface temperature of 350 °F which was a condition for which an
aqueous phase was present and the salt remained in solution. Significant fouling occurred
for velocities of 5.5 and 8.0 ft/sec at a surface temperature operated at a low 400 °F (Tb =
300 °F) which was a condition for which the aqueous phase at the heat transfer surface was
dissolved or boiled to extinction and the salt was deposited on the heat transfer surface. / Graduation date: 1991
|
73 |
Membrane fouling characterization by confocal scanning laser microscopyZator, Maria Malgorzata 01 April 2009 (has links)
En sectores tan diversos como la industria alimentaria, la biotecnología y el tratamiento de aguas residuales, la filtración tangencial con membranas se viene utilizando de forma creciente en la separación, purificación y clarificación de distintas corrientes de proceso que contienen gran variedad de compuestos orgánicos. La limitación principal para el empleo industrial de las técnicas de separación por membranas es el ensuciamiento de éstas. El ensuciamiento se atribuye, de forma general, a la reducción en el diámetro de los poros, a su bloqueo y/o a la formación de un depósito en la superficie de la membrana. El avance en el desarrollo de técnicas para la caracterización, el control y la prevención del ensuciamiento de las membranas ha estado limitado por la falta de técnicas adecuadas y no invasivas para la medición del ensuciamiento. El objetivo principal del presente proyecto es desarrollar estrategias apropiadas para aplicar microscopía láser confocal de barrido (CSLM) al estudio del ensuciamiento de membranas de filtración, centrándose en el ensuciamiento causado por macromoléculas biológicas. En la tesis se han llevado a cabo experimentos de microfiltración (MF) de soluciones modelo puras y de mezclas de proteínas, polisacáridos y polifenoles. Las imágenes captadas mediante CSLM de las membranas al final de diferentes experimentos de filtración, han servido para obtener información cualitativa, sobre localización de las distintas moléculas, y cuantitativa, sobre la presencia individual de cada compuesto en el interior y la superficie de la membrana. Se han realizado también intentos de aplicación de visualización en línea mediante CSLM del proceso de microfiltración. / In fields such as the food and dairy industries, biotechnology, and the treatment of industrial effluents, pressure-driven membrane processes such as microfiltration are increasingly being used for the separation, purification and clarification of protein-containing solutions. A major limitation to the widespread use of membrane filtration, however, is fouling. Fouling is usually attributed to pore constriction, pore blocking or the deposition of cells and cell debris on the membrane surface and can lead to a reduction in the filtrate flux of more than an order of magnitude. Progress in developing a means for characterizing, controlling and preventing membrane fouling has been impeded by lack of suitable non-invasive fouling-measurement techniques. The main aim of this study is to develop suitable strategies for applying Confocal Scanning Laser Microscopy (CSLM) to characterise membrane fouling caused by biological macromolecules. Microfiltration experiments of single, binary and ternary model solutions of proteins, polysaccharides and polyphenols were carried out and CSLM images of the membranes at the end of the different filtration runs were obtained, in order to obtain quantitative and qualitative information about fouling patterns. Some trials of on-line monitoring of cross-flow microfiltration processes were also carried out.
|
74 |
Effects of membrane fouling on the operation of low pressure reverse osmosis system for water treatmentTsai, Wen-Chin 27 August 2012 (has links)
The tap-water treated by water treatment plants in southern Taiwan is coming from surface water of the rivers, subsurface stream and underground water of deep wells. The original raw water possesses were high level of hardness and ammonia- nitrogen solute due to affection by terrain, geology and human activities within water origin area. And considering the water quality from Kao-ping river origin is hard to control during in rain fall and dry season, we were to construction efficiency procedure of water treatment to obtain a high quality of drink water. There were high hardness and TDS from strata limestone of groundwater to increase treatment difficulty in southern Taiwan water treatment plant. Therefore, recommended that the influent water standards were limited hardness and silicate (SiO2) less than 300 mg/L and 15 mg/L, respectively. On the other hand, the metal substances Ca, Mg, Si and Al in influent water were 74.3 mg/L, 18.7 mg/L, 12.9 mg/L and 0.1 mg/L, respectively. Results show high inorganic substances that could increase the treatment loading. This project of the study, were make sure the problem of membrane clogging and fouling happened to the finest water treatment plants who use LPRO membrane system to remove the impurity in the influent water. Moreover, by accumulation of processes operation experience on site were according to water quality statistics data and membrane autopsy of single LPRO membrane by processes. In the same time, we prepared three single tube of RO membrane to experiment on site and collected data from before and after antifouling additive, that could find the membrane fouling and clogging results of the influent raw water. Obviously, the influent raw water quality into LPRO membrane is closely connected to the efficiency of treatment plant. The results show when the temperature decreased of influent raw water that could decrease the effluent volume from LPRO, because the water temperature affected by increase viscosity of raw water. The first part clogging substances of membrane were aluminum (Al), that could be use aluminate coagulant to make increase more aluminum. And the TOC value of the effluent were from 0.2 to 1.4 mg/L, that shows the effluent water was kept stably but UV254 value were have more than 75% efficiency. Results of organic analysis on LPRO effluent indicates the pretreatment process could leave annular structure organic. In other hand, when using EEFM to analysis the spectra sampling of organic of LPRO, there finding a lot low emission wavelength fluoresces of influent on EX/EM 230/340 and decrease the wavelength fluoresces value on EX/EM 280/330 and 240/340 by RO membrane system of LPRO. To be worth mentioning, when organism of sampling fluoresces value during high emission wavelength on EX/EM 240/400 nm was disappeared, that indicates RO membrane has good performance to separation organism of water. And results of elements analysis on RO membrane surface were using SEM and EDX have a lot aluminum and silicate on segment RO membrane module. Therefore, results show pretreatment process of coagulation and sedimentation could not treatment metal substances and organic efficiency, that was to effect directly cause to make the problems of membrane fouling and clogging.
|
75 |
SEPARATION OF PROTEINS BY ION EXCHANGE AND MEMBRANE CHROMATOGRAPHY: BUFFER COMPOSITION, INTERFERING IMPURITIES AND FOULING CONSIDERATIONSImam, Tahmina 16 January 2010 (has links)
Efficient separation of target protein from impurities is crucial in bioseparation for large
scale production and purity of the target protein. Two separation process approaches were
considered in this study. The first approach focused on identifying major impurity and
optimization of solution properties for target protein purification. The second approach
consisted of designing an adsorbent that interacted specifically with the target molecule.
The first study included modification of protein solution properties (pH, ionic strength,
buffer ions) in order to maximize lysozyme purification by a strong cation exchange resin.
The interaction of phytic acid, a major impurity, present in transgenic rice extracts, that
contributes to decreased lysozyme adsorption capacity on SP Sepharose was evaluated.
The target protein was lysozyme, which is used in a purified form as a baby formula
additive to reduce gastrointestinal tract infections. At constant ionic strength, lysozyme in
pH 4.5 acetate buffer had a higher binding capacity and stronger binding strength than at
pH 6.0. Lysozyme in sodium phosphate buffer of pH 6.0 exhibited lower adsorption
capacity than in pH 6 Tris buffer. Binding capacity and strength were significantly
affected by phytic acid in all studies buffers. The second study consisted of surface
modification of microfiltration membranes for protein purification and separation and
reduces fouling. This study describes adsorption and fouling of chemically modified
microfiltration membranes with bovine serum albumin (BSA) and immunoglobulin G
(IgG). Least fouling resulted with polyethylene glycol (PEG) membranes when BSA
protein was used. Amine-functionalized membranes showed specific interaction with
BSA. There was multi-layer deposition of IgG on amine-functionalized membrane. G3 membrane synthesized to selectively bind IgG seemed a noble option to separate IgG
from a protein mixture.
|
76 |
Antimicrobial activity of macroalgae from Kwazulu-Natal, South Africa, and the isolation of a bioactive compound from Osmundaria serrata (Rhodophyta)Barreto, Michael. January 2005 (has links)
Thesis (Ph.D.)(Botany))--University of Pretoria, 2003. / Includes bibliographical references.
|
77 |
An analysis of water for water-side fouling potential inside smooth and augmented copper alloy condenser tubes in cooling tower water applicationsTubman, Ian McCrea. January 2003 (has links)
Thesis (M.S.)--Mississippi State University. Department of Mechanical Engineering. / Title from title screen. Includes bibliographical references.
|
78 |
Assessment of fouling in native and surface-modified water purification membranesMiller, Daniel Joseph Lang 14 July 2014 (has links)
Fouling is a major obstacle to the implementation of membranes in water purification applications. Hydrophilization of the membrane surface tends to mitigate fouling because hydrophobic interactions between foulants and the membrane are reduced. Polydopamine was deposited onto membranes to render their surfaces hydrophilic. The chemical structure of polydopamine, which was previously ambiguous, was investigated by many spectroscopic techniques. While previously thought to consist of covalently-linked monomers, polydopamine was found to be an aggregate of partly-oxidized dopamine units linked by strong, non-covalent secondary interactions. Polydopamine was also used as a platform for the molecular conjugation of other anti-fouling materials, such as poly(ethylene glycol), to the membrane surface. Membrane fouling was assessed by constant permeate flux crossflow filtration with an oil/water emulsion feed. The threshold flux--the flux at which the rate of fouling significantly increases--was determined by a well-established flux stepping technique. Membrane resistance evolution during fouling was compared for constant flux and constant transmembrane pressure operation using unmodified membranes. Below the threshold flux (slow fouling), good agreement in resistance evolution was found between the two operational modes; above the threshold flux, significant deviation was observed. The effect of polydopamine and polydopamine-g-poly(ethylene glycol) surface modifications was studied under constant flux crossflow fouling conditions. The surface modifications were found to increase the membrane resistance, resulting in higher transmembrane pressures in the modified membranes than in the unmodified membranes at fluxes below the threshold flux. Modified membranes were also compared to unmodified membranes with the same pure water permeance (same initial resistance). In this case, the modified membranes had lower transmembrane pressures during fouling than the unmodified membranes, suggesting that a preferred method of membrane surface modification is to begin with a membrane of higher permeance than required, and then surface-modify it to achieve the desired permeance. The efficacy of polydopamine and polydopamine-g-poly(ethylene glycol) surface modifications in reducing biofouling was also evaluated. Modified membranes showed reduced protein and bacterial adhesion in short-term tests, which are commonly used to assess biofouling propensity. However, long-term operation under hydrodynamic conditions mimicking those of an industrial module showed no benefit of the hydrophilic coatings in limiting biofouling. / text
|
79 |
Marine biofouling organisms respond to multiple stressors in a changing climateHou, Huiyi, 侯慧仪 January 2013 (has links)
The marine environment is likely to experience profound climate change in the coming 100 years and beyond. Ocean acidification (OA) is one of the climate change issues attracting the attention of researchers all over the world. The decreasing pH of the oceans might threaten marine biofouling organisms. However, climate change is not only involved with ocean acidification (OA) but the change of other environmental variables, such as temperature and salinity. These environmental factors act as multiple stressors and synergistically affect shell-forming biofoulers, in which, the calcium carbonate skeleton structure plays an important role of protection. Previous studies regarding the response of marine biofoulers to the environmental stressors were generally summarized in this article. Then a calcifying biofouling tube worm, Hydroides elegans, were reared from larval stage to early juvenile stage under control and treatment conditions to examine the combined effects of temperature (24, 30°C), pH (8.1, 7.7) and salinity (34, 27ppt). Juvenile growth and chemical composition (Mg/Ca and Sr/Ca) of their calcareous tubes were tested and used as assessment of effects of the three environmental stressors. The experiment revealed that H. elegans was robust to the environmental change because juvenile development positively responded to temperature and the interaction between temperature and salinity. Other combinations did not exert significant effect. The results suggest the need of further study of proteomics and transcriptomics to reveal the mechanisms of calcification as well as long-term studies to examine the energy costs of adaptation. In addition, the non-significant chemical composition (Mg/Ca and Sr/Ca) of the tube of this organism suggest a need of further exploration of the same animal but not only focus on three factors but the seawater chemical composition as well. / published_or_final_version / Environmental Management / Master / Master of Science in Environmental Management
|
80 |
Fouling of Seawater Reverse Osmosis (SWRO) Membrane: Chemical and Microbiological CharacterizationKhan, Muhammad T. 12 1900 (has links)
In spite of abundant water resources, world is suffering from the scarcity of usable water. Seawater Reverse Osmosis (SWRO) desalination technology using polymeric membranes has been recognized as a key solution to water scarcity problem. However, economic sustainability of this advanced technology is adversely impacted by the membrane fouling problem.
Fouling of RO membranes is a highly studied phenomenon. However, literature is found to be lacking a detailed study on kinetic and dynamic aspects of SWRO membrane fouling. The factors that impact the fouling dynamics, i.e., pretreatment and water quality were also not adequately studied at full–scale of operation.
Our experimental protocol was designed to systematically explore these fouling aspects with the objective to improve the understanding of SWRO membrane fouling mechanisms. An approach with multiple analytical techniques was developed for fouling characterization. In addition to the fouling layer characterization, feed water quality was also analysed to assess its fouling potential. Study of SWRO membrane fouling dynamics and kinetics revealed variations in relative abundance of chemical and microbial constituents of the fouling layer, over operating time. Aromatic substances, most likely humic–like substances, were observed at relatively high abundance in the initial fouling layer, followed by progressive increase in relative abundances of proteins and polysaccharides. Microbial population grown on all membranes was dominated by specific groups/species belonging to different classes of Proteobacteria phylum; however, similar to abiotic foulant, their relative abundance also changed with the biofilm age and with the position of membrane element in RO vessel.
Our results demonstrated that source water quality can significantly impact the RO membrane fouling scenarios. Moreover, the major role of chlorination in the SWRO membrane fouling was highlighted. It was found that intermittent mode of chlorination is better than continuous mode of chlorination of seawater, as anti–biofouling strategy. It was also confirmed that significant biofilm development was inevitable even with the use of chlorine to disinfect SWRO membranes.
Our findings on the dynamic patterns of SWRO membrane fouling should help in further elaborating research projects focusing on the development of better strategies to minimize this troublesome phenomenon.
|
Page generated in 0.0651 seconds