Spelling suggestions: "subject:"nonlinearity."" "subject:"nonlinearityχ.""
311 |
Microwave interaction in nonlinear metamaterialsLapine, Mikhail 22 September 2004 (has links)
This Thesis is devoted to theoretical investigation of the effective magnetic properties of nonlinear metamaterials, based on resonant conductive elements.A general expression for the effective bulk ermeability in the microwave frequency range is derived. Frequency dispersion of the permeability is studied and recommendations for optimisation of metamaterials with negative permeability are given. The results are supported with numerical simulation of the finite metamaterial sample.Next, a metamaterial possessing nonlinear magnetic responseowing to nonlinear electronic components, inserted into resonant conductive elements, is proposed. For the limit of low nonlinearity, the arising quadratic nonlinear susceptibility is calculated; it is shown how it is controlled by the properties and arrangement of the structure elements as well as by the type and characteristics of the insertion.For the insertions operating in essentially nonlinear regime, when a nonlinear magnetic susceptibility cannot be introduced, an approach is developed for analyzing three-wave coupling processes with a strong pump wave and two weak signals. Peculiarities of coupling, arising from use the insertions with variable resistance or variable capacitance are discussed. Estimates are given that extremely strong nonlinear coupling can be achieved using typical diodes reported in literature.Finally, it is demonstrated how the metamaterial band gap can be tuned, and the resulting metamaterial switching between transmitting, reflecting and absorbing states is described. The details appear to depend drastically on the type of nonlinear components inserted into the resonant conductive elements. Relying on practical estimates, it is predicted that the transmittance of a metamaterial slab can be modulated by several orders of magnitude already using a slab with thickness equal to one microwave wavelength in vacuum.
|
312 |
Statistical Methods For Kinetic Modeling Of Fischer Tropsch Synthesis On A Supported Iron CatalystCritchfield, Brian L. 15 December 2006 (has links) (PDF)
Fischer-Tropsch Synthesis (FTS) is a promising technology for the production of ultra-clean fuels and chemical feedstocks from biomass, coal, or natural gas. Iron catalysts are ideal for conversion of coal and biomass. However, precipitated iron catalysts used in slurry-bubble column reactors suffer from high attrition resulting in difficulty separating catalysts from product and increased slurry viscosity. Thus, development of an active and selective-supported iron catalyst to manage attrition is needed. This thesis focuses on the development of a supported iron catalyst and kinetic models of FTS on the catalyst using advanced statistical methods for experimental design and analysis. A high surface area alumina, modified by the addition of approximately 2 wt% lanthanum, was impregnated with approximately 20 wt% Fe and 1% Pt in a two step procedure. Approximately 10 wt% Fe and 0.5 wt% Pt was added in each step. The catalyst had a CO uptake of 702 μmol/g, extent of reduction of 69%, and was reduced at 450°C. The catalyst was stable over H2 partial pressures of 4-10 atm, CO partial pressures of 1-4 atm, and temperatures of 220-260°C. Weisz modulus values were less than 0.15. A Langmuir-Hinshelwood type rate expression, derived from a proposed FTS mechanism, was used with D-optimal criterion to develop experiments sequentially at 220°C and 239°C. Joint likelihood confidence regions for the rate expression parameters with respect to run number indicate rapid convergence to precise-parameter estimates. Difficulty controlling the process at the designed conditions and steep gradients around the D-optimal criterion resulted in consecutive runs having the same optimal condition. In these situations another process condition was chosen to avoid consecutive replication of the same process condition. A kinetic model which incorporated temperature effects was also regressed. Likelihood and bootstrap confidence intervals suggested that the model parameters were precise. Histograms and skewness statistics calculated from Bootstrap resampling show parameter-effect nonlinearities were small.
|
313 |
Enhancing Servo System Performance : Robust Nonlinear Deadbeat Predictive Current Control for Permanent Magnet Synchronous Motors / Förbättring av prestanda för servo system : Robust ickelinjär deadbeat förutsägande strömkontroll för permanenta magnet synkronmotorerZhao, Xingyu January 2023 (has links)
The Permanent Magnet Synchronous Motor (PMSM, also known as the servo motor) is a crucial component within robotic servo systems. To optimally respond to the torque demands sent from the high-level motion controller, the PMSM current controller must track the reference with speed and precision. Nevertheless, the operation of servo motors could be compromised due to the nonlinearity of flux linkage and inaccuracies in parameters induced by unpredictable fluctuations in temperature. This Master’s thesis proposes a novel Robust Nonlinear Deadbeat Predictive Current Control (RN-DPCC) scheme to counter these challenges effectively. The nonlinear mappings between flux linkage and current on the dq-axis are established using polynomial fitting based on experimental data. Furthermore, the Nonlinear Deadbeat Predictive Current Control (N-DPCC) is derived using nonlinear feedforward. Meanwhile, Delayed Integral Action (DIA) is introduced as a robustness-enhancing measure for N-DPCC, thus evolving it into the Robust N-DPCC (RN-DPCC). Compared to conventional Integral Action (IA), DIA effectively curtails overshoot triggered by integral error and accelerates the current transient without incorporating additional tunable parameters. Numerical simulations that leverage the mathematical modeling of the converter and nonlinear PMSM are implemented using fundamental blocks in Simulink, which replicates the actual experimental setup employed within the Motor Control Lab at ABB Corporate Research. The effectiveness of employing nonlinear feedforward compensation is confirmed through a comparative analysis of the simulation results from N-DPCC and conventional Deadbeat Predictive Current Control (DPCC). The enhancements in transient response brought about by DIA are demonstrated through a comparison of RNDPCC and N-DPCC with IA. The robustness of RN-DPCC is demonstrated by comparing it with N-DPCC under conditions where parameter inaccuracies are present. / Den permanenta magnet-synkronmotorn (PMSM, även känd som servomotorn) är en avgörande komponent inom robotiserade servosystem. För att optimalt kunna reagera på momentkraven som skickas från högnivårörelsekontrollern måste PMSM-strömregulatorn följa referensen med hastighet och precision. Trots detta kan driften av servomotorer påverkas av ickelinjäriteter i flödeslänkningen och felaktigheter i parametrar som orsakas av oförutsägbara temperaturfluktuationer. Denna magisteravhandling föreslår en ny robust icke-linjär deadbeat-prediktiv strömreglering (RN-DPCC) för att effektivt hantera dessa utmaningar. De icke-linjära avbildningarna mellan flödeslänkning och ström på dq-axeln etableras med hjälp av polynomisk anpassning baserat på experimentella data. Dessutom härleds den ickelinjära deadbeat-prediktiva strömregleringen (N-DPCC) med hjälp av Ickelinjär feedforward. Samtidigt introduceras fördröjd integralåtgärd (DIA) som en robusthetsförbättrande åtgärd för N-DPCC, vilket förvandlar den till Robust N-DPCC (RN-DPCC). Jämfört med konventionell integralåtgärd (IA) minskar DIA effektivt överhäng som utlöses av integralfel och accelererar strömövergången utan att införa ytterligare justerbara parametrar. Numeriska simuleringar som utnyttjar den matematiska modelleringen av omvandlaren och den icke-linjära PMSM implementeras med hjälp av grundläggande block i Simulink, vilket återskapar den faktiska experimentella uppställningen som används i Motor Control Lab vid ABB Corporate Research. Effektiviteten i att använda icke-linjär framåtmatningskompensation bekräftas genom en jämförande analys av simulationsresultaten från N-DPCC och konventionell deadbeat-prediktiv strömreglering (DPCC). Förbättringarna i transientrespons som DIA medför demonstreras genom en jämförelse av RN-DPCC och NDPCC med IA. Robustheten hos RN-DPCC demonstreras genom att jämföra den med N-DPCC under förhållanden där parameterfel förekommer.
|
314 |
[pt] OTIMIZAÇÃO TOPOLÓGICA DE ESTRUTURAS GEOMETRICAMENTE NÃOLINEARES BASEADA EM UM ESQUEMA DE INTERPOLAÇÃO DE ENERGIA / [en] TOPOLOGY OPTIMIZATION OF GEOMETRICALLY NONLINEAR STRUCTURES BASED ON AN ENERGY INTERPOLATION SCHEMEANDRE XAVIER LEITAO 26 May 2020 (has links)
[pt] Em muitos problemas de engenharia, e.g., no projeto de próteses biomédicas flexíveis ou em dispositivos de absorção de energia, estruturas sofrem grandes deslocamentos. Nestes casos, a não linearidade geométrica deve ser levada em conta na resposta estrutural. Contudo, algoritmos de otimização topológica considerando não linearidades, e modelados segundo o método de elementos finitos, sofrem instabilidades numéricas causadas por distorções excessivas nas regiões de baixa densidade dentro do domínio de
projeto. Em particular, a matriz de rigidez pode não ser positiva definida comprometendo a convergência do processo de otimização. Esta dissertação visa estudar um esquema de interpolação entre as formulações lineares e não lineares de elementos finitos para aliviar tais distorções. Em cada etapa da otimização, para determinar a configuração de equilíbrio, o sistema de equações não-lineares é resolvido pelo procedimento de Newton-Raphson. Utilizando-se das informações dos gradientes calculadas através do método
adjunto, o Método das Assíntotas Móveis é empregado para atualizar as variáveis de projeto. Por meio de problemas de referência considerando grandes deslocamentos, são demonstradas a eficácia e a eficiência deste esquema de interpolação. Mais especificamente, as topologias otimizadas estão de acordo com aquelas obtidas na literatura e exibem a dependência esperada em relação ao nível de carga. O esquema de interpolação em estudo desempenha papel crucial na solução de problemas não lineares em níveis
elevados de carga, permitindo que a rotina de otimização convirja e se obtenha a distribuição de material ótima. / [en] In many engineering problems, e.g., design of flexible biomedical prostheses or energy absorption devices, structures undergo large displacements. In those problems, the structural response must take into account
the geometric nonlinearity. However, topology optimization algorithms regarding nonlinearities, and based on the finite element method, typically suffer from numerical instabilities caused by excessive distortions of
low-density regions within the design domain. In particular, the stiffness matrix may be no longer positive definite, which can jeopardize the convergence of the optimization process. This thesis aims to study
an interpolation scheme between linear and nonlinear finite element formultation to alleviate this convergence issue. At each step of the optimization, the nonlinear state equation is solved by the Newton-Raphson procedure to determine the equilibrium configuration. Making use of the gradient information computed from the adjoint method, the Method of Moving Asymptotes is employed to update the design variables. Through several benchmark problems considering large displacements, it is demonstrated the effectiveness and efficiency of this interpolation scheme. More specifically, the optimized designs are in agreement with those obtained in the literature and exhibit correct load-level dependence. The investigated interpolation scheme plays a crucial role in the solution of nonlinear problems with high load levels, allowing the optimization routine to converge and to obtain the optimal material arrangement.
|
315 |
Berechnungsmodelle zur Beschreibung der Interaktion von bewegtem Sägedraht und IngotLorenz, Michael 25 February 2014 (has links) (PDF)
Die vorliegende Arbeit widmet sich der Aufgabe makroskopische Berechnungsmodelle zur Beschreibung des Drahtsägens zu erarbeiten. Ziel ist es, die wesentlichen Effekte abzubilden und den Einfluss von Prozessparametern auf die Dynamik des Systems zu bestimmen. Ein zentraler Punkt ist die Modellierung des bewegten Sägedrahtes. Durch die dem Kontinuum an den Auflagern aufgeprägte Führungsbewegung sind einerseits die Randbedingungen und andererseits ortsfest auf den Draht wirkende Lasten nichtmateriell. Die korrekte kinematische Beschreibung dieses Sachverhaltes ist essentielle Grundlage für die spätere Anwendung des Prinzips von HAMILTON. Durch die Führungsbewegung, die Formulierung der Kontaktkräfte als Folgelasten und durch explizit zeitabhängige Systemparameter ergibt sich ein kompliziertes Systemverhalten. Die dargestellten Berechnungsergebnisse umfassen Studien zu stationären Lagen, die Berechnung von Eigenfrequenzen, Stabilitätsnachweise des dynamischen Grundzustandes, die Bestimmung von Zeitlösungen und die Simulation des Materialabtrages beim Einschnitt. / The aim of the present thesis is to generate macroscopic models to describe the wire sawing process. The principal purpose is to illustrate basic effects and to investigate the influence of important process parameters relating to the dynamics of the system. A fundamental point is the modeling of the moving wire. Because of the axially movement of the continuum the boundary conditions and spatial acting loads are non-material. The precise kinematical description of this issue is the pre-condition for the correct evaluation of HAMILTON’s principle to characterize the dynamics of the system. The resultant complex system behavior is a consequence of the movement of the wire, of the formulation of the contact forces as follower loads and of explicitly time-dependent model parameters. The results of research contain studies of steady state equilibrium solutions and the proof of their LJAPUNOW stability, the calculation of eigenfrequencies, steady state time solutions under harmonically oscillating contact forces and the simulation of the material removal during the cutting process.
|
316 |
Αριθμητική μελέτη της δυναμικής συμπεριφοράς μοντέλων Kaldor της μακροοικονομίαςΜάρκελλος, Παναγιώτης Ιωάννης 22 November 2011 (has links)
Τα πρωτότυπα αποτελέσματα της διατριβής περιέχονται στα κεφ. 2, 3 και 4. Στο κεφ. 2 μελετούμε με αριθμητικές μεθόδους ένα 3-διάστατο διακριτό μοντέλο μακροοικονομίας με σταθερές ισοτιμίες. Χρησιμοποιώντας μια μέθοδο πλέγματος, βρίσκουμε την περιοχή ευστάθειας στον παραμετρικό χώρο, προσδιορίζουμε την καμπύλη διακλαδώσεων Hopf-Neimark και θεωρούμε σύντομα την εμφάνιση “γλωσσών” Arnold. Υπολογίζονται διαγράμματα διακλαδώσεων και εκθέτη Lyapunov που δίνουν πληροφορίες για τους επιχειρηματικούς κύκλους και την πολύπλοκη δυναμική του μοντέλου και. παρουσιάζουμε παραδείγματα κυκλικών και χαοτικών ελκυστών. Στο κεφ. 3 μελετούμε με τις ίδιες μεθόδους ένα διακριτό μοντέλο αλληλεπίδρασης περιοχών με σταθερές ισοτιμίες, επέκταση του προηγούμενου μοντέλου σε 5 διαστάσεις. Στόχος ήταν να δείξουμε πόσο εφικτή και αποτελεσματική είναι μία αριθμητική μελέτη για ηπίως πολυδιάστατα διακριτά δυναμικά συστήματα με πολλές παραμέτρους. Βρήκαμε ότι η κίνηση κεφαλαίων δεν αρκεί για τη δημιουργία κύκλων όταν είναι χαμηλή η εμπορική αλληλεπίδραση. Το κατώφλι εμπορίου προβλέπεται περίπου στο 15% των εμπορικών συναλλαγών. Αντίθετα, το μοντέλο δεν προβλέπει αναγκαίο ελάχιστο επίπεδο κίνησης κεφαλαίων για την εμφάνιση των κύκλων. Δίνουμε παραδείγματα διαγραμμάτων διακλάδωσης και εκθέτη Lyapunov που δείχνουν την εμφάνιση κύκλων ή ακολουθίας διπλασιασμού περιόδου, και παραδείγματα της ανάπτυξής τους. Το κεφ. 4 περιέχει σύντομη περιγραφή συμπληρωματικών αποτελεσμάτων στα παραπάνω μοντέλα, και στα αντίστοιχα μοντέλα μεταβλητής ισοτιμίας συναλλάγματος, καθώς και κατευθύνσεις μελλοντικής έρευνας. Στο κεφ. 5 περιγράφονται σύντομα οι υπολογιστικές τεχνικές που χρησιμοποιήσαμε. Η διατριβή δείχνει την αποτελεσματικότητα της αριθμητικής προσέγγισης για πολυδιάστατα διακριτά μοντέλα. / The original results of the dissertation are contained in ch. 2, 3 and 4, and concern mainly the problem of business cycles. In ch. 2 we explore numerically a 3D discrete Kaldorian macrodynamic model of open economy with fixed exchange rates. Using a grid search method we determine the stability region in parameter space, and the Hopf-Neimark bifurcation curve, and discuss briefly the occurrence of Arnold tongues. Bifurcation and Lyapunov exponent diagrams are computed providing information on the business cycles and illustrating the complex dynamics involved. Examples of cycles and chaotic attractors are presented. In ch. 3 we explore a 5D extension of the previous model using the same methods. The aim was to demonstrate the feasibility and effectiveness of the numerical approach for discrete dynamical systems of moderately high dimensionality and several parameters. We found that capital movement is not sufficient to generate interregional business cycles when trade interaction is low. The trade threshold is predicted at about 15% of trade transactions. By contrast, no minimum level of capital mobility exists as a requirement for the emergence of business cycles. Examples of bifurcation and Lyapunov exponent diagrams illustrating the occurrence of cycles or period doubling, and examples of their development, are given. Ch. 4 contains a short description of complementary results on the above models, and on two other models which extend the previous models to the case of flexible exchange rates, as well as some lines of future research. In ch. 5, the computational techniques employed in the present study are briefly described. The dissertation indicates the effectiveness of the numerical approach for high dimensional discrete models.
|
317 |
Berechnungsmodelle zur Beschreibung der Interaktion von bewegtem Sägedraht und IngotLorenz, Michael 09 December 2013 (has links)
Die vorliegende Arbeit widmet sich der Aufgabe makroskopische Berechnungsmodelle zur Beschreibung des Drahtsägens zu erarbeiten. Ziel ist es, die wesentlichen Effekte abzubilden und den Einfluss von Prozessparametern auf die Dynamik des Systems zu bestimmen. Ein zentraler Punkt ist die Modellierung des bewegten Sägedrahtes. Durch die dem Kontinuum an den Auflagern aufgeprägte Führungsbewegung sind einerseits die Randbedingungen und andererseits ortsfest auf den Draht wirkende Lasten nichtmateriell. Die korrekte kinematische Beschreibung dieses Sachverhaltes ist essentielle Grundlage für die spätere Anwendung des Prinzips von HAMILTON. Durch die Führungsbewegung, die Formulierung der Kontaktkräfte als Folgelasten und durch explizit zeitabhängige Systemparameter ergibt sich ein kompliziertes Systemverhalten. Die dargestellten Berechnungsergebnisse umfassen Studien zu stationären Lagen, die Berechnung von Eigenfrequenzen, Stabilitätsnachweise des dynamischen Grundzustandes, die Bestimmung von Zeitlösungen und die Simulation des Materialabtrages beim Einschnitt.:1 Einleitung
1.1 Technische Problemstellung und Motivation der Arbeit
1.2 Literaturübersicht
1.3 Thema und Gliederung der Arbeit
2 Theoretische Grundlagen
2.1 Notation und mathematische Grundlagen
2.2 Kinematische Grundlagen der Kontinuumsmechanik
2.2.1 Konfiguration und Betrachtungsweisen
2.2.2 Verformungskinematik
2.2.3 Zeitableitungen
2.3 Variationsrechnung
2.3.1 Grundlagen
2.3.2 Verallgemeinerte Variationen
2.4 Kinetik / Prinzip von HAMILTON
2.5 Diskretisierung von Feldproblemen
2.6 Stabilität stationärer Lösungen
2.6.1 Grundlagen der kinetischen Stabilitätstheorie
2.6.2 Erste Methode von LJAPUNOW
2.6.3 Stabilitätsbetrachtung für bewegte Kontinua
2.7 Zeitlösung
2.7.1 Homogene Lösung der Störungsdifferentialgleichungen
2.7.2 Partikuläre Lösung der Störungsdifferentialgleichungen
3 Mechanisches Modell und Modellvarianten
3.1 Kinematik des Drahtes in LAGRANGE-Koordinaten
3.2 Kinematik des Drahtes in EULER-Koordinaten
3.3 Modell I
3.3.1 Variationsformulierung und Feldgleichungen
3.3.2 Ortsdiskretisierung der Variationsformulierung
3.3.3 Stationäre Lage, Stabilitätsuntersuchung und Zeitlösung
3.4 Modell II
3.4.1 Variationsformulierung und Feldgleichungen
3.4.2 Ortsdiskretisierung der Variationsformulierung
3.4.3 Stationäre Lage, Stabilitätsuntersuchung und Zeitlösung
3.5 Numerische Umsetzung
3.6 Berechnungsergebnisse
3.6.1 Stationäre Lagen
3.6.2 Eigenfrequenzen
3.6.3 Stabilitätsuntersuchungen
3.6.4 Zeitlösungen
4 Ankopplung des Ingot und Modellierung des Materialabtrages
4.1 FE- Modell des Gesamtblocks
4.1.1 Bestimmung der mechanischen Eigenschaften des Ingot
4.1.2 Berechnungsergebnisse
4.2 Strukturmechanisches Modell des Gesamtblocks und Ankopplung an den Sägedraht
4.3 Variationsformulierungen der gekoppelten Gesamtsysteme unter Berücksichtigung des Materialabtrages
4.3.1 Gesamtmodell I
4.3.2 Gesamtmodell II
4.4 Simulation des Schnittvorganges
5 Zusammenfassung / Ausblick
6 Verzeichnisse
6.1 Literaturverzeichnis
6.1.1 Allgemeine Literatur
6.1.2 Literatur zum Thema Drahtsägen
6.1.3 Literatur zum Thema bewegte Kontinua
Anhang / The aim of the present thesis is to generate macroscopic models to describe the wire sawing process. The principal purpose is to illustrate basic effects and to investigate the influence of important process parameters relating to the dynamics of the system. A fundamental point is the modeling of the moving wire. Because of the axially movement of the continuum the boundary conditions and spatial acting loads are non-material. The precise kinematical description of this issue is the pre-condition for the correct evaluation of HAMILTON’s principle to characterize the dynamics of the system. The resultant complex system behavior is a consequence of the movement of the wire, of the formulation of the contact forces as follower loads and of explicitly time-dependent model parameters. The results of research contain studies of steady state equilibrium solutions and the proof of their LJAPUNOW stability, the calculation of eigenfrequencies, steady state time solutions under harmonically oscillating contact forces and the simulation of the material removal during the cutting process.:1 Einleitung
1.1 Technische Problemstellung und Motivation der Arbeit
1.2 Literaturübersicht
1.3 Thema und Gliederung der Arbeit
2 Theoretische Grundlagen
2.1 Notation und mathematische Grundlagen
2.2 Kinematische Grundlagen der Kontinuumsmechanik
2.2.1 Konfiguration und Betrachtungsweisen
2.2.2 Verformungskinematik
2.2.3 Zeitableitungen
2.3 Variationsrechnung
2.3.1 Grundlagen
2.3.2 Verallgemeinerte Variationen
2.4 Kinetik / Prinzip von HAMILTON
2.5 Diskretisierung von Feldproblemen
2.6 Stabilität stationärer Lösungen
2.6.1 Grundlagen der kinetischen Stabilitätstheorie
2.6.2 Erste Methode von LJAPUNOW
2.6.3 Stabilitätsbetrachtung für bewegte Kontinua
2.7 Zeitlösung
2.7.1 Homogene Lösung der Störungsdifferentialgleichungen
2.7.2 Partikuläre Lösung der Störungsdifferentialgleichungen
3 Mechanisches Modell und Modellvarianten
3.1 Kinematik des Drahtes in LAGRANGE-Koordinaten
3.2 Kinematik des Drahtes in EULER-Koordinaten
3.3 Modell I
3.3.1 Variationsformulierung und Feldgleichungen
3.3.2 Ortsdiskretisierung der Variationsformulierung
3.3.3 Stationäre Lage, Stabilitätsuntersuchung und Zeitlösung
3.4 Modell II
3.4.1 Variationsformulierung und Feldgleichungen
3.4.2 Ortsdiskretisierung der Variationsformulierung
3.4.3 Stationäre Lage, Stabilitätsuntersuchung und Zeitlösung
3.5 Numerische Umsetzung
3.6 Berechnungsergebnisse
3.6.1 Stationäre Lagen
3.6.2 Eigenfrequenzen
3.6.3 Stabilitätsuntersuchungen
3.6.4 Zeitlösungen
4 Ankopplung des Ingot und Modellierung des Materialabtrages
4.1 FE- Modell des Gesamtblocks
4.1.1 Bestimmung der mechanischen Eigenschaften des Ingot
4.1.2 Berechnungsergebnisse
4.2 Strukturmechanisches Modell des Gesamtblocks und Ankopplung an den Sägedraht
4.3 Variationsformulierungen der gekoppelten Gesamtsysteme unter Berücksichtigung des Materialabtrages
4.3.1 Gesamtmodell I
4.3.2 Gesamtmodell II
4.4 Simulation des Schnittvorganges
5 Zusammenfassung / Ausblick
6 Verzeichnisse
6.1 Literaturverzeichnis
6.1.1 Allgemeine Literatur
6.1.2 Literatur zum Thema Drahtsägen
6.1.3 Literatur zum Thema bewegte Kontinua
Anhang
|
Page generated in 0.0562 seconds