• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 27
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Molecular characterization of Tobacco rattle virus proteins involved in pathogenicity / Molecular characterization of Tobacco rattle virus proteins involved in pathogenicity

Ghazala, Walid 24 May 2007 (has links)
No description available.
22

Myší polyomavirus:Způsob translokace do buněčného jádra a rozpoznání virových genomů sensory vrozené imunity / Mouse polyomavirus:The way of virus translocation to the cell nucleus and sensing of viral genomes by sensors of innate immunity

Soldatova, Irina January 2021 (has links)
To understand molecular mechanisms of individual steps of virus infection is a prerequisite for successful design of specific and effective antiviral drugs. Polyomaviruses, replicating in the cell nucleus, travel from plasma membrane to the endoplasmic reticulum (ER) in endosomes. However, it is not clear how they deliver their DNA genomes from ER to the nucleus. In this thesis, we found that partially disassembled virions of the Murine polyomavirus (MPyV) interact with importin β1 at around 6 hours post infection. Mutational disruption of the nuclear localization signal (NLS) of the major capsid protein, VP1, and/or common NLS sequence of the minor capsid proteins VP2 and VP3 did not affect the structure and composition of virions, but it resulted in decreased viral infectivity (up to 80%). Virions are thus released from ER to cytosol and translocate to the nucleus via nucleopores. Mutation analyses of NLSs of individual capsid proteins showed that MPyV virions can utilize VP1 and VP2/VP3 NLSs in concert. However, one functional NLS, either that of VP1 or VP2/3 seems to be sufficient for the delivery of VP1-VP2/3 complexes into the nucleus, although none of these proteins is delivered into the nucleus separately. Thus, the conformation of NLS regions given by the presence of all three capsid...
23

Phosphorylation of the RNA-binding protein She2 and its impact on mRNA localization in yeast

Farajzadeh, Nastaran 11 1900 (has links)
La localisation de l'ARNm est un mécanisme post-transcriptionnel régulant l'expression des gènes qui donne un contrôle précis sur la production spatiale et temporelle des protéines. Des milliers de transcrits dans un large éventail d'organismes ou de types cellulaires se sont avérés localisés dans un compartiment sous-cellulaire spécifique. La levure bourgeonnante Saccharomyces cerevisiae est l'un des organismes modèle les plus étudiés pour comprendre le processus de localisation de l'ARNm. Plus de trente ARNm sont activement transportés et localisés à l'extrémité du bourgeon de la levure bourgeonnante. Dans cet organisme, la localisation des transcrits à l'extrémité du bourgeon, tels que l'ARNm ASH1, dépend de la protéine de liaison à l'ARN She2, qui interagit directement avec les éléments de localisation dans ces ARNm durant leur transcription. She2 est une protéine liant l’ARN non-canonique, qui s’assemble en tétramère pour pouvoir lier l’ARN. Lorsque le complexe ARNm-She2 est exporté vers le cytoplasme, celui-ci interagit avec la protéine She3 et la myosine Myo4, qui transportent le complexe vers le bourgeon. Une fois qu'un ARNm est correctement localisé, sa traduction est activée pour permettre la synthèse locale de sa protéine. Les mécanismes régulant la localisation des ARNm sont encore très peu connus. Cependant, plusieurs évidences suggèrent que la machinerie de localisation peut être régulée par des modifications post-traductionnelles. Dans notre étude, en utilisant une colonne de purification de phosphoprotéines, nous avons constaté que She2 est une phosphoprotéine. Nous avons utilisé une approche de phosphoprotéomique pour identifier les résidus phosphorylés dans She2 in vivo. Nous avons identifié plusieurs nouveaux phosphosites qui affectent la capacité de She2 à favoriser l'accumulation asymétrique de la protéine Ash1. Fait intéressant, plusieurs phosphosites sont présents aux interfaces de dimérisation et de tétramérisation de She2. En nous concentrant sur la position T109, nous montrons qu'un mutant phosphomimétique T109D inhibe l'interaction She2-She2 et diminue l'interaction de She2 avec ses cofacteurs Srp1, She3 et l’ARNm ASH1. Fait intéressant, la mutation T109D réduit considérablement l'expression de She2 et perturbe la localisation de l'ARNm ASH1. Nos résultats montrent que le contrôle de l'oligomérisation de She2 par phosphorylation représente un mécanisme qui régule la localisation de l'ARNm dans la levure bourgeonnante. Dans le but d’identifier la ou les kinases impliquées dans la phosphorylation de She2, nous avons recherché des motifs de reconnaissance de kinases connues parmi les phosphosites que nous avons identifiés. Nous avons trouvé que les résidus T109, S217 et S224 font partie de sites putatifs de la Caséine kinase II (CKII), suggérant que ces positions seraient susceptibles d'être phosphorylés par cette kinase. Un essai de phosphorylation in vitro a révélé que She2 est phosphorylée par CKII au niveau des résidus S217 et S224, mais pas au résidu T109. Nous avons montré que la phosphorylation de la forme monomérique de She2 par CKII in vitro est augmentée par rapport à la forme sauvage tétramérique. De plus, nous avons observé que le domaine C-terminal de She2, qui contient sa séquence de localisation nucléaire (NLS) est phosphorylé par CKII. Cependant, le rôle de la phosphorylation dans le NLS de She2 demeure inconnu. Dans l'ensemble, nos résultats montrent que les modifications post-traductionnelles sur She2 régulent la localisation de l'ARNm chez la levure. Cette étude permettra d'élucider les mécanismes de contrôle de la localisation de l'ARNm chez la levure et comment des modifications post-traductionnelles sur She2 régulent ce processus. / mRNA localization is a post-transcriptional mechanism regulating gene expression that gives precise control over the spatial and temporal production of proteins. Thousands of transcripts in a wide array of organisms or cell types were shown to localize to specific subcellular compartments. The budding yeast Saccharomyces cerevisiae serves as one of the best model organisms to study the mechanisms of mRNA localization. Over thirty transcripts are actively transported and localized at the bud tip of the budding yeast. In this organism, localization of transcripts to the bud tip, such as the ASH1 mRNA, depends on the RNA-binding protein She2, which is responsible for recognizing localization elements in these mRNAs during transcription. She2 is a non-canonical RNA-binding protein which assembles as a tetramer in order to bind RNA. When the mRNA-She2 complex is exported to the cytoplasm, the protein She3 and myosin Myo4 join the complex to transport it to the bud. Once an mRNA is properly localized, its translation is generally activated to allow the local synthesis of its protein. The mechanisms regulating the localization of mRNAs are still poorly known. Still, several pieces of evidence suggest that post-translational modifications may regulate the localization machinery. Using a phosphoprotein purification column, we found that She2 is a phosphoprotein. We used a phosphoproteomic analysis to identify the phosphorylated residues in She2 in vivo. We identified several new phosphosites that impact the capacity of She2 to promote the asymmetric accumulation of Ash1. Interestingly, several of these phosphosites are present at the dimerization and tetramerization interfaces of She2. Focusing on T109, we show that a phosphomimetic mutant T109D inhibits She2-She2 interaction and decreases the interaction of She2 with its co-interactors Srp1, She3 and ASH1 mRNA. Interestingly, the T109D mutation significantly reduces the expression of She2 and disrupts ASH1 mRNA localization. Altogether, our results show that the control of She2 oligomerization by phosphorylation represents a mechanism that regulates mRNA localization in budding yeast. In order to identify which kinase(s) are involved in She2 phosphorylation, we searched for known kinases recognition motifs among the identified phosphosites. We found that T109, S217 and S224 are putative Casein kinase II (CKII) sites, suggesting that this kinase may phosphorylate these residues. Indeed, an in vitro phosphorylation assay revealed that She2 is phosphorylated by CKII at S217 and S224 but not at T109. We found that the phosphorylation of a monomeric She2 mutant by CKII in vitro is increased compared to the wild-type tetrameric protein. Furthermore, we found that the C-terminal domain of She2, which contains its nuclear localization signal (NLS), is phosphorylated by CKII. However, the biological function of the phosphorylation in the NLS is still unknown. Altogether, our results show that post-translational modifications in She2 regulate mRNA localization in yeast. This study will help elucidate the mechanisms that control mRNA localization in yeast and how post-translational modifications in She2 regulate this process.
24

A mechanism for co-transcriptional recruitment of mRNA localization factor on nascent mRNAs in budding yeast

Shen, Zhi Fa 05 1900 (has links)
Le transport et la localisation des ARN messagers permettent de réguler l’expression spatiale et temporelle de facteurs spécifiques impliqués dans la détermination du destin cellulaire, la plasticité synaptique, la polarité cellulaire et la division asymétrique des cellules. Chez S.cerevisiæ, plus de trente transcrits sont transportés activement vers le bourgeon cellulaire. Parmi ces transcrits, l’ARNm ASH1 (asymetric synthesis of HO) est localisé à l’extrémité du bourgeon pendant l’anaphase. Ce processus va entrainer une localisation asymétrique de la protéine Ash1p, qui sera importée uniquement dans le noyau de la cellule fille, où elle entraine le changement de type sexuel. La localisation asymétrique de l’ARNm ASH1, et donc de Ash1p, implique la présence de différents facteurs de localisation. Parmi ces facteurs, les protéines She (She1p/Myo4p, She2p et She3p) et les répresseurs traductionnels (Puf6p, Loc1p et Khd1p) participent à ce mécanisme. La protéine navette She2p est capable de lier l’ARNm ASH1 et va entrainer le ciblage de cet ARNm vers l’extrémité du bourgeon en recrutant le complexe She3p-Myo4p. Des répresseurs traductionnels régulent la traduction de cet ARNm et évitent l’expression ectopique de la protéine Ash1p pendant son transport. Alors que la fonction cytoplasmique de She2p sur la localisation des ARNm est connue, sa fonction nucléaire est encore inconnue. Nous avons montré que She2p contient une séquence de localisation nucléaire non classique qui est essentielle à son import nucléaire médié par l’importine α (Srp1p). L’exclusion de She2p du noyau par mutation de son NLS empêche la liaison de Loc1p et Puf6p sur l’ARNm ASH1, entrainant un défaut de localisation de l’ARNm et de la protéine. Pour étudier plus en détail l’assemblage de la machinerie de localisation des ARNm dans le noyau, nous avons utilisé des techniques d’immunoprécipitation de chromatine afin de suivre le recrutement des facteurs de localisation et des répresseurs traductionnels sur les ARNm naissants. Nous avons montré que She2p est recruté sur le gène ASH1 pendant sa transcription, via son interaction avec l’ARNm ASH1 naissant. Puf6p est également recruté sur ASH1, mais d’une manière dépendante de la présence de She2p. De façon intéressante, nous avons détecté une interaction entre She2p et la plus grande sous-unité de l’ARN polymérase II (Rpb1p). Cette interaction est détectée avec la forme active en élongation de l’ARN polymérase II. Nous avons également démontré que She2p interagit avec le complexe d’élongation de la transcription Spt4p/Spt5p. Une délétion de SPT4 ou une mutation dans SPT5 (Ts spt5) à température restrictive empêche l’interaction entre She2p et Rpb1p, et diminue le recrutement de She2p au gène ASH1, entrainant un défaut de localisation de l’ARNm et un défaut de localisation asymétrique de la protéine Ash1p. De manière globale, nos résultats montrent que les facteurs impliqués dans la localisation cytoplasmique des ARNm et dans leur contrôle traductionnel sont recrutés de façon co-transcriptionnelle sur les ARNm naissants via leur interaction avec la machinerie de transcription, suggèrant un rôle important de la machinerie transcriptionelle dans la localisation des ARNm. / Cytoplasmic transport and localization of messenger RNAs allows temporal and spatial expression of specific factors involved in cell fate determination, synaptic plasticity, cellular polarity or asymmetric cell division. In S. cerevisiae, over thirty transcripts are actively transported and localized to the bud tip of budding yeast. One of them, the ASH1 mRNA (for Asymmetric Synthesis of HO), is localized at the bud tip in late anaphase cells. This allows Ash1p, a transcriptional repressor of the HO endonuclease, to be sorted exclusively to the daughter cell nucleus, where it prevents mating type switching. Proper ASH1 mRNA localization and Ash1p asymmetric expression involve localization factors, which are part of the She-proteins (She1p/Myo4p, She2p and She3p), and translational repressors (the proteins Puf6, Loc1 and Khd1). The nucleo-cytoplasmic shuttling protein She2p binds the ASH1 mRNA and targets it for localization at the bud tip by recruiting the She3p-Myo4p complex. Translational repressors regulate the translation of ASH1 mRNA and avoid ectopic expression of the Ash1 protein during the transport of its transcript. While the cytoplasmic role of She2p in mRNA localization is known, its nuclear function is still unclear. We now show that She2p contains a non-classical nuclear localization signal sequence (NLS) which is essential for its nuclear import via the importin  Srp1p. Exclusion of She2p from the nucleus by mutagenesis of its NLS disrupt the binding of Loc1p and Puf6p to the ASH1 mRNA, leading to defective mRNA localization and Ash1p sorting. To further investigate the assembly of the mRNA localization machinery in the nucleus, we used chromatin immunoprecipitation (ChIP) to follow the recruitment of localization factors and translational repressors on nascent localized mRNAs. We found that She2p is recruited on the ASH1 gene during transcription, via its interaction with the nascent ASH1 mRNA. Puf6p is also recruited on the ASH1 gene, but in a She2p-dependent manner. Interestingly, we detected an interaction between She2p and Rpb1p, the largest subunit of RNA polymerase II in vivo. This interaction is independent of the RNA-binding properties of She2p, and involves the elongating form of the RNA polymerase II. We also found that She2p interacts with both members of the elongation factors Spt4p /Spt5p; Deletion of SPT4 or Ts spt5 mutants at restrictive temperature disrupted the interaction between She2p and Rpb1p, and then reduced the recruitment of She2p on the ASH1 gene, resulting in ASH1 mRNA delocalization and defective Ash1p sorting. Altogether, our results show that factors involved in cytoplasmic mRNA localization and translational control are recruited co-transcriptionally on nascent mRNAs via interation with the transcription machinery, pointing toward a role of the transcription machinery in the mRNA localization process.
25

Nuclear import of histone fold motif containing heterodimers by importin 13 / Nukleärer Import von Heterodimeren mit Histone-Fold-Motif durch Importin 13

Walker, Patrick 29 April 2009 (has links)
No description available.
26

A mechanism for co-transcriptional recruitment of mRNA localization factor on nascent mRNAs in budding yeast

Shen, Zhi Fa 05 1900 (has links)
Le transport et la localisation des ARN messagers permettent de réguler l’expression spatiale et temporelle de facteurs spécifiques impliqués dans la détermination du destin cellulaire, la plasticité synaptique, la polarité cellulaire et la division asymétrique des cellules. Chez S.cerevisiæ, plus de trente transcrits sont transportés activement vers le bourgeon cellulaire. Parmi ces transcrits, l’ARNm ASH1 (asymetric synthesis of HO) est localisé à l’extrémité du bourgeon pendant l’anaphase. Ce processus va entrainer une localisation asymétrique de la protéine Ash1p, qui sera importée uniquement dans le noyau de la cellule fille, où elle entraine le changement de type sexuel. La localisation asymétrique de l’ARNm ASH1, et donc de Ash1p, implique la présence de différents facteurs de localisation. Parmi ces facteurs, les protéines She (She1p/Myo4p, She2p et She3p) et les répresseurs traductionnels (Puf6p, Loc1p et Khd1p) participent à ce mécanisme. La protéine navette She2p est capable de lier l’ARNm ASH1 et va entrainer le ciblage de cet ARNm vers l’extrémité du bourgeon en recrutant le complexe She3p-Myo4p. Des répresseurs traductionnels régulent la traduction de cet ARNm et évitent l’expression ectopique de la protéine Ash1p pendant son transport. Alors que la fonction cytoplasmique de She2p sur la localisation des ARNm est connue, sa fonction nucléaire est encore inconnue. Nous avons montré que She2p contient une séquence de localisation nucléaire non classique qui est essentielle à son import nucléaire médié par l’importine α (Srp1p). L’exclusion de She2p du noyau par mutation de son NLS empêche la liaison de Loc1p et Puf6p sur l’ARNm ASH1, entrainant un défaut de localisation de l’ARNm et de la protéine. Pour étudier plus en détail l’assemblage de la machinerie de localisation des ARNm dans le noyau, nous avons utilisé des techniques d’immunoprécipitation de chromatine afin de suivre le recrutement des facteurs de localisation et des répresseurs traductionnels sur les ARNm naissants. Nous avons montré que She2p est recruté sur le gène ASH1 pendant sa transcription, via son interaction avec l’ARNm ASH1 naissant. Puf6p est également recruté sur ASH1, mais d’une manière dépendante de la présence de She2p. De façon intéressante, nous avons détecté une interaction entre She2p et la plus grande sous-unité de l’ARN polymérase II (Rpb1p). Cette interaction est détectée avec la forme active en élongation de l’ARN polymérase II. Nous avons également démontré que She2p interagit avec le complexe d’élongation de la transcription Spt4p/Spt5p. Une délétion de SPT4 ou une mutation dans SPT5 (Ts spt5) à température restrictive empêche l’interaction entre She2p et Rpb1p, et diminue le recrutement de She2p au gène ASH1, entrainant un défaut de localisation de l’ARNm et un défaut de localisation asymétrique de la protéine Ash1p. De manière globale, nos résultats montrent que les facteurs impliqués dans la localisation cytoplasmique des ARNm et dans leur contrôle traductionnel sont recrutés de façon co-transcriptionnelle sur les ARNm naissants via leur interaction avec la machinerie de transcription, suggèrant un rôle important de la machinerie transcriptionelle dans la localisation des ARNm. / Cytoplasmic transport and localization of messenger RNAs allows temporal and spatial expression of specific factors involved in cell fate determination, synaptic plasticity, cellular polarity or asymmetric cell division. In S. cerevisiae, over thirty transcripts are actively transported and localized to the bud tip of budding yeast. One of them, the ASH1 mRNA (for Asymmetric Synthesis of HO), is localized at the bud tip in late anaphase cells. This allows Ash1p, a transcriptional repressor of the HO endonuclease, to be sorted exclusively to the daughter cell nucleus, where it prevents mating type switching. Proper ASH1 mRNA localization and Ash1p asymmetric expression involve localization factors, which are part of the She-proteins (She1p/Myo4p, She2p and She3p), and translational repressors (the proteins Puf6, Loc1 and Khd1). The nucleo-cytoplasmic shuttling protein She2p binds the ASH1 mRNA and targets it for localization at the bud tip by recruiting the She3p-Myo4p complex. Translational repressors regulate the translation of ASH1 mRNA and avoid ectopic expression of the Ash1 protein during the transport of its transcript. While the cytoplasmic role of She2p in mRNA localization is known, its nuclear function is still unclear. We now show that She2p contains a non-classical nuclear localization signal sequence (NLS) which is essential for its nuclear import via the importin  Srp1p. Exclusion of She2p from the nucleus by mutagenesis of its NLS disrupt the binding of Loc1p and Puf6p to the ASH1 mRNA, leading to defective mRNA localization and Ash1p sorting. To further investigate the assembly of the mRNA localization machinery in the nucleus, we used chromatin immunoprecipitation (ChIP) to follow the recruitment of localization factors and translational repressors on nascent localized mRNAs. We found that She2p is recruited on the ASH1 gene during transcription, via its interaction with the nascent ASH1 mRNA. Puf6p is also recruited on the ASH1 gene, but in a She2p-dependent manner. Interestingly, we detected an interaction between She2p and Rpb1p, the largest subunit of RNA polymerase II in vivo. This interaction is independent of the RNA-binding properties of She2p, and involves the elongating form of the RNA polymerase II. We also found that She2p interacts with both members of the elongation factors Spt4p /Spt5p; Deletion of SPT4 or Ts spt5 mutants at restrictive temperature disrupted the interaction between She2p and Rpb1p, and then reduced the recruitment of She2p on the ASH1 gene, resulting in ASH1 mRNA delocalization and defective Ash1p sorting. Altogether, our results show that factors involved in cytoplasmic mRNA localization and translational control are recruited co-transcriptionally on nascent mRNAs via interation with the transcription machinery, pointing toward a role of the transcription machinery in the mRNA localization process.
27

Nucleo-cytoplasmic transport of TIS11 proteins and stress granule assembly: two potential new roles for Transportins / Transport nucléo-cytoplasmique des protéines de la famille TIS11 et formation des granules de stress: deux nouveaux rôles potentiels des Transportines

Twyffels, Laure 04 September 2013 (has links)
The nucleo-cytoplasmic compartmentalization enables eukaryotic cells to develop sophisticated post-transcriptional regulations of gene expression. However, managing the exchanges of macromolecules between the two compartments also represents a formidable challenge for the cells. Nucleo-cytoplasmic exchanges rely on specialized soluble carriers and take place at nuclear pore complexes that span the nuclear envelope. Active nucleo-cytoplasmic transport of proteins, in particular, is performed mainly by a family of carriers called karyopherins, which includes about twenty members in mammals. Some of them, called importins, recognize nuclear localization signals (NLSs) in their substrates and convey them into the nucleus. Others, called exportins, recognize nuclear export signals (NESs) in their substrates and bring them back to the cytoplasm. <p>Many RNA-binding proteins (RBPs) shuttle between the nucleus and the cytoplasm, where they can often fulfill different functions. RBPs also frequently localize into specialized microdomains that are not delimited by a membrane but in which specific factors are concentrated. Those include processing bodies and stress granules, which are cytoplasmic foci associated with mRNA decay, storage and translational repression. Post-transcriptional regulations mediated by RBPs can therefore be modulated rapidly and efficiently through changes in the localization of RBPs.<p>The first part of this work focuses on the subcellular localization and nucleo-cytoplasmic transport of the Drosophila RBP dTIS11. Like its mammalian and yeast homologues, dTIS11 binds AU-rich elements in the 3’UTR of its target mRNAs, and stimulates their rapid deadenylation and decay. Here, we have observed that although dTIS11 appears to be located mostly in the cytoplasm, it is constantly shuttling in and out of the nucleus. We show that the export of dTIS11 from the nucleus depends on the CRM1 exportin and is mediated by a hydrophobic NES that encompasses residues 101 to 113 in dTIS11 sequence. We also identify a cryptic Transportin-dependent PY nuclear localization signal (PY-NLS) in the tandem zinc finger region of dTIS11 and show that it is conserved across the TIS11 protein family. This PY-NLS partially overlaps the second zinc finger (ZnF2) of dTIS11. Importantly, mutations disrupting the capacity of the ZnF2 to coordinate a Zn2+ ion unmask dTIS11 and TTP PY-NLS and promote nuclear import. Taken together, our results indicate that the nuclear export of Drosophila and mammalian TIS11 proteins is mediated by CRM1 through diverging NESs, while their nuclear import mechanism might rely on a conserved PY-NLS whose activity is negatively regulated by ZnF2 folding.<p>In the second part, we present preliminary results which implicate the nucleo-cytoplasmic transport machinery in the assembly of stress granules (SGs) in mammalian cells. SGs contain silenced mRNPs which resemble stalled initiation complexes, and they form transiently in response to acute stress, concomitantly with a global arrest of translation. While their exact role remains undefined, it seems clear that SGs are able to exchange mRNPs with polysomes and with PBs, and that they are connected to post-transcriptional and translational regulations of gene expression during stress. Here, we show that inhibition of Transportin-1 expression or function does not affect the translational status of cells but impairs the assembly of stress granules. Finally, we show that Transportin-1 and -2B, but not -2A, localize into stress granules in response to several stresses. <p>In conclusion, we suggest two potential new roles for Transportins, in the nucleo-cytoplasmic traffic of TIS11 proteins on the one hand and in the assembly of stress granules on the other hand.<p>/<p>Le compartimentage nucléo-cytoplasmique permet aux cellules eucaryotes de réguler l’expression génétique par des mécanismes post-transcriptionnels élaborés. Les ARN messagers subissent plusieurs étapes de maturation dans le noyau avant d’être exportés vers le cytoplasme où ils sont traduits et dégradés. Ces processus sont effectués via des protéines de liaison à l’ARN, ou RBPs. Beaucoup de RBPs exercent des fonctions différentes dans le noyau et dans le cytoplasme, et leur activité peut dès lors être rapidement modulée par une modification de leur localisation.<p>Le transport nucléo-cytoplasmique actif des protéines s’effectue à travers les pores nucléaires et fait majoritairement appel à des transporteurs solubles de la famille des karyophérines. Ceux-ci reconnaissent au sein des protéines à transporter une séquence-passeport appelée NLS (nuclear localization signal) ou NES (nuclear export signal) selon la direction nécessitée. <p>Le présent travail comporte deux parties. La première porte sur la localisation subcellulaire et le transport nucléo-cytoplasmique des protéines de la famille TIS11, et plus particulièrement de dTIS11 qui est le seul représentant de cette famille chez la Drosophile. Comme ses homologues dans d’autres espèces, dTIS11 est une RBP qui favorise la déadénylation et la dégradation de ses ARN messagers cibles. Nos résultats démontrent que dTIS11 fait la navette entre le noyau et le cytoplasme. L’export de dTIS11 hors du noyau est réalisé par la karyophérine CRM1 et fait appel à un NES différent de celui présent chez les protéines TIS11 mammaliennes. Nous identifions également un NLS cryptique au sein du domaine à deux doigts de zinc avec lequel dTIS11 lie l’ARN. Ce NLS correspond partiellement au signal consensus reconnu par la Transportine. Il est démasqué par la mutation du second doigt de zinc ;dans ces conditions, il permet l’import de dTIS11 par la Transportine. Enfin, nous montrons qu’il est conservé dans d’autres protéines de la famille TIS11. <p>Dans la seconde partie, nous nous intéressons aux granules de stress, qui sont des microdomaines cytoplasmiques dans lesquels se concentrent des RBPs et des ARN messagers non traduits en réponse à un stress cellulaire. Nous montrons que les karyophérines appartenant à la sous-famille des Transportines sont présentes dans ces granules et que l’inhibition de l’expression ou de la fonction des Transportines réduit la formation de ces granules en réponse à divers stress cellulaires. Nous écartons la possibilité que ce résultat soit un effet indirect d’un ralentissement du métabolisme traductionnel. Nos résultats suggèrent donc une implication des Transportines dans la formation des granules de stress. <p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.1292 seconds