Spelling suggestions: "subject:"lil impregnation paper"" "subject:"itil impregnation paper""
1 |
Bushing diagnosis using artificial intelligence and dissolved gas analysisDhlamini, Sizwe Magiya 20 June 2008 (has links)
This dissertation is a study of artificial intelligence for diagnosing the condition of
high voltage bushings. The techniques include neural networks, genetic algorithms,
fuzzy set theory, particle swarm optimisation, multi-classifier systems, factor analysis,
principal component analysis, multidimensional scaling, data-fusion techniques,
automatic relevance determination and autoencoders. The classification is done using
Dissolved Gas Analysis (DGA) data based on field experience together with
criteria from IEEEc57.104 and IEC60599. A review of current literature showed
that common methods for the diagnosis of bushings are: partial discharge, DGA,
tan- (dielectric dissipation factor), water content in oil, dielectric strength of oil,
acidity level (neutralisation value), visual analysis of sludge in suspension, colour of
the oil, furanic content, degree of polymerisation (DP), strength of the insulating
paper, interfacial tension or oxygen content tests. All the methods have limitations
in terms of time and accuracy in decision making. The fact that making decisions
using each of these methods individually is highly subjective, also the huge size of
the data base of historical data, as well as the loss of skills due to retirement of
experienced technical staff, highlights the need for an automated diagnosis tool that
integrates information from the many sensors and recalls the historical decisions and
learns from new information. Three classifiers that are compared in this analysis are
radial basis functions (RBF), multiple layer perceptrons (MLP) and support vector
machines (SVM). In this work 60699 bushings were classified based on ten criteria.
Classification was done based on a majority vote. The work proposes the application
of neural networks with particle swarm optimisation (PSO) and genetic algorithms
(GA) to compensate for missing data in classifying high voltage bushings. The work
also proposes the application of fuzzy set theory (FST) to diagnose the condition of
high voltage bushings. The relevance and redundancy detection methods were able
to prune the redundant measured variables and accurately diagnose the condition
of the bushing with fewer variables. Experimental results from bushings that were
evaluated in the field verified the simulations. The results of this work can help to
develop real-time monitoring and decision making tools that combine information
from chemical, electrical and mechanical measurements taken from bushings.
|
2 |
The Effect of HV Impulses on Partial Discharge Activity and on the Dielectric Response in Oil-impregnated Paper InsulationKiiza, Respicius Clemence January 2014 (has links)
This work investigates how HV impulses affect the behavior of partial discharge (PD) activity and the low voltage dielectric response of oil-impregnated paper insulation. It also investigates how the change in the PD activity is related to the degradation level of oil-impregnated paper insulation. In order to accomplish these objectives, the ageing were done under three different electrical stress conditions, i.e. HV impulses following an early stage 50 Hz AC PD activity, a prolonged PD activity at a 50 Hz AC stress alone, and a combination of HV impulses and a prolonged PD activity at a 50 Hz AC stress. In order to predict the level of deterioration caused by each ageing stress condition, the dielectric spectroscopy (DS) measurements in a frequency range of 1.0 mHz to 1.0 kHz were performed before and after subjecting a test object to each of the ageing stress conditions. The investigations were mainly done on the test samples consisting of a cavity deliberately introduced between the layers of oil-impregnated paper. Additionally, the investigation about the effect of HV impulses alone on the DS results was done on aged oil-impregnated paper transformer bushing. The PD experimental results presented in this thesis indicate that HV impulses below the impulse breakdown stress following an early stage AC PD activity will neither cause a significant change in phase resolved partial discharge (PRPD) patterns nor damage oil-impregnated paper insulation to a level that can be noticed with visual observations. On the other hand, a prolonged PD activity at a 50 Hz AC stress can cause the change in PRPD patterns by decreasing the total PD charge and the number of PD pulses, but cannot quickly damage the oil-impregnated paper insulation as it would do when it is combined with HV impulses. In addition to that, the results show that the combination of both, HV impulses and a prolonged PD activity at a 50 Hz AC stress can cause a high drop in the PD parameters (total PD charge and number of PD pulses). The DS results show that HV impulses below the impulse breakdown stress following an early stage 50 Hz AC PD activity will not cause a significant increase in the real part of the complex capacitance and in the dissipation factor as they will do when they are combined with a prolonged PD activity at a 50 Hz AC stress. Further, the dielectric spectroscopy results obtained every three hours during the ageing of oil-impregnated paper insulation by a prolonged PD activity at an AC stress show that the dissipation factor will increase, but the PD parameters (total PD charge and the repetition rate) will decrease with time of PD application. For a case of the aged oil-impregnated paper transformer bushing, HV impulses of amplitudes up to 200 kV did not result in the change in the dissipation factor curve before removing insulating oil from the bushing. However, after removing about 2.5 liters of insulating oil from the bushing, HV impulses resulted in the change in the dissipation factor curve. The magnitudes of the dissipation factor curves appeared to be much higher in the middle frequencies region, i.e. the frequencies between 10 mHz and 100 Hz. After refilling the bushing with the same insulating oil, the loss peak shifted towards the higher frequencies. To understand how the ageing by-products initiated by PDs in the small cavity can modify the geometry of oil-impregnated paper insulation; the model of oil-impregnated paper insulation, comprising of a small cavity, was implemented in Finite Element Method (FEM) software (COMSOL Multiphysics 4.2a). The comparison between the simulation and experimental results show that PD by-products will result in two zones, i.e. aged and unaged zones, and the aged zone will grow with time of PD application; thereby increasing the dissipation factor. On the other hand, in order to interpret the change in the dissipation factors for the dielectrics in aged oil-impregnated paper transformer bushing after had been exposed to HV impulses, a model of a part of the condenser body (oil-paper insulation) was also implemented in the FEM software (COMSOL Multiphysics 4.2a). To model a condition of low insulating oil level in the bushing, a part of oil subdomains was replaced with the air dielectric properties. A comparison between the simulation and experimental dissipation factor curves indicate that HV impulses will produce the by-products (ions), which will increase the conductivity of air when the bushing has low insulating oil level. On refilling the bushing with the same insulating oil, the insulating oil will take these ions and the reactions between the aged insulating oil by-products (such as acids) and the ions, may produce more ions, thereby increasing further the conductivity of the insulating oil. / <p>QC 20140303</p>
|
3 |
Moisture Aided Degradation of Oil Impregnated Paper Insulation in Power TransformersMandlik, Manoj K January 2014 (has links) (PDF)
Transformers are the most expensive and critical asset in any electrical power network. Their failure results in long interruption of power supply with consequent loss of reliability and revenue. Understanding and detection of the failure mechanism helps in avoiding catastrophic failures, unplanned outages and improving the power system reliability. Oil impregnated paper (OIP) and pressboards form the main soild insulation in a transformer. Life of the transformer is governed mostly by the life of OIP insulation. Until recently, it was thought that ageing of the OIP insulation in power transformer and its eventual failure, is mainly a function of temperature and electrical stresses. However, it has now been realized that the moisture causes rapid degradation of OIP and needs a special attention. Considering its practical relevance, this research program was formulated with goals: (i) to study the ageing of OIP insulation under temperature and moisture stresses, (ii) to seek correlation between diagnostic ageing indices and end-of-life (EOL) and (iii) to develop a life model for OIP considering moisture along with the thermal stress.
Observing that working with actual transformers or even the prototypes are rather inordinately expensive, experiments were conducted with paper strips immersed in oil in test tubes with paper to oil ratio kept same as that in power transformers. In order to cater for the statistical nature of the phenomena, adequate numbers of test specimens were employed (25 numbers for each experiment). Experiments were conducted for two years at temperatures 90°C, 110°C & 120°C and moisture 1%, 2% & 3%.
Following the literature, the degree of polymerization (DP) was chosen as the primary index for ageing. As measurement of DP is not only destructive, but also impractical on most of the working transformers, with an aim to develop suitable diagnostic indices for ageing, 2-furfural (2-FAL) and oxides of carbon (CO and CO2) were also measured. Empirical relation between ageing and amount of stresses and time have been deduced for the relevant range. Limiting value of these indices to prescribe the end-of-life, as well as, their correlation with DP have been worked out and reported.
In order to bring the role of moisture explicitly, based on earlier work on multi-stress ageing, a multiplicative power law supplementing the Arrhenius factor is envisaged. Accordingly, a phenomenological combined stress model involving the time to failure, temperature, and moisture content is deduced. Based on the experimental results, this model is statistically validated and the values of parameters appearing in the model is obtained. Thus the combined stress model enables one to estimate the life of OIP insulation at any temperature and moisture under synergy.
In summary, this work through experimental and analytical approach has contributed to the evaluation of the aging of OIP insulation used in power transformers under the combined action of moisture and temperature.
|
4 |
Dielectric Response and Partial Discharge Diagnostics of Insulation Systems by Utilizing High Voltage ImpulsesNikjoo, Roya January 2016 (has links)
In this thesis, power system transients are considered as an opportunity for development of on-line diagnostics of power components and specifically the insulation systems of power transformers and bushings. A new technique for on-line dielectric response measurement of power transformer bushings is proposed which utilizes natural transients in the power system, such as lightning and switching surges, as stimuli. Laboratory investigations are done on implementation of the proposed technique. Measurement considerations, data acquisition and processing involved in achievement of reasonable accuracy in the Dielectric Response (DR) are presented. Capability of the technique in tracking of the degradation signatures such as moisture content in the insulation has been evaluated and it has shown a good level of accuracy by being compared to the Frequency Domain Spectroscopy (FDS). The proposed technique is tested on the service-aged 150 kV bushings and feasibility of the technique for monitoring of dielectric properties of power transformer bushings has been assessed; the results are promising for the technique to be used in the real application. Partial Discharges (PD) behavior under transients has been also studied for different materials in this project. PD behavior of different defects, at different insulation condition, responding to the overvoltage transients in form of superimposed impulses on ac voltages was investigated and it was perceived how their distinctive response and the interpretation of that, can be useful for their identification. Besides the conventional materials, surface ac PD properties of modified paper with silica and zinc oxide nanoparticles under the superimposed impulses have been assessed in this project. Proper type and optimum concentration level of nanoparticles in the paper are the factors that lead to the improvement of PD behavior in the modified paper under overvoltage transients. / <p>QC 20160525</p>
|
5 |
Mechanisms of Electrical Ageing of Oilimpregnated Paper due to Partial DischargesGhaffarian Niasar, Mohamad January 2015 (has links)
In this thesis, partial discharge (PD) phenomenon in oil-impregnated paper (OIP) is investigated under accelerated electrical stress. The thesis is mainly focused on the characteristic of PD activity and the influence it has on the insulation properties of OIP. PD source was created by introducing an air filled cavity embedded between layers of OIP. PD activity is investigated from the initiation up to final puncture breakdown of the OIP. The time-evolution of number, maximum magnitude and average magnitude of PD is investigated for cavities with different diameter and height. It was found that time to breakdown is shorter if the cavity diameter is larger and cavities with higher depth produce larger PDs. Comparison between PD activity in three cases, i.e. unaged OIP, thermally aged OIP and OIP samples with higher moisture content is performed. In general, it is found that for all cases the number and the maximum magnitude of PD follows a similar trend versus ageing time. During the very beginning of the experiment large discharges occur and they disappear after a short ageing time. Number and maximum magnitude of PD increase with time until reaching a peak value. Finally both parameters decrease with time and puncture breakdown occurs in the sample. Even though PD activity in thermally aged OIP is higher compared to the unaged OIP samples, the time to breakdown for new and thermally aged OIP samples is similar while it is shorter for OIP samples with higher moisture content. In this thesis, partial discharge (PD) phenomenon in oil-impregnated paper (OIP) is investigated under accelerated electrical stress. The thesis is mainly focused on the characteristic of PD activity and the influence it has on the insulation properties of OIP. PD source was created by introducing an air filled cavity embedded between layers of OIP. PD activity is investigated from the initiation up to final puncture breakdown of the OIP. The time-evolution of number, maximum magnitude and average magnitude of PD is investigated for cavities with different diameter and height. It was found that time to breakdown is shorter if the cavity diameter is larger and cavities with higher depth produce larger PDs. Comparison between PD activity in three cases, i.e. unaged OIP, thermally aged OIP and OIP samples with higher moisture content is performed. In general, it is found that for all cases the number and the maximum magnitude of PD follows a similar trend versus ageing time. During the very beginning of the experiment large discharges occur and they disappear after a short ageing time. Number and maximum magnitude of PD increase with time until reaching a peak value. Finally both parameters decrease with time and puncture breakdown occurs in the sample. Even though PD activity in thermally aged OIP is higher compared to the unaged OIP samples, the time to breakdown for new and thermally aged OIP samples is similar while it is shorter for OIP samples with higher moisture content. Breakdown strength of OIP samples is measured before and after ageing with PDs. It is found that the breakdown strength of OIP samples decreases by around 40% after the sample is exposed to accelerated electrical ageing. Furthermore a thermal model was developed to investigate the possible transition of breakdown mechanism from erosion to thermal breakdown in OIP dielectrics. It was found that PD activity can lower the thermal breakdown voltage of OIP up to four times. / <p>QC 20150206</p>
|
6 |
Diagnostics of Oil-Impregnated Paper Insulation Systems by Utilizing Lightning and Switching TransientsNikjoo, Roya January 2014 (has links)
Development of the power gridtowards a more reliable and smarter system requires frequent on-line monitoring of the power components. Power transformers and their bushings are particularly important components in a power transmission system and their insulation degradation may lead to catastrophic failures. Time consuming and costly replacement of these components raise the importance of their frequent monitoring. A fault in a power transformer bushing can also involve in the failure of the transformer. Therefore, on-line diagnostics of power transformers and their bushings is of great interest. Several methods exist for diagnostics of these components. However, some of them can only be done off-line in maintenance periods, and the existing on-line methods generally provide less information, especially on the internal solid insulation parts. In this project, a new technique for on-line diagnostics of the power transformer and the bushing insulation is proposed. In this technique, natural transients happening in the power system such as lightning and switching surges can be used as stimuli for on-line dielectric response measurements. This technique can provide information on insulation close to what Dielectric Spectroscopy offers in off-line measurements. The wide-ranging frequency content of power system transients is their advantage for being usedas stimuli when measuring the Dielectric Response. The response can have particular signatures due to different types of defects in the insulation varying with frequency. Oil-impregnated paper as a major insulation component in power transformer and its bushing has been investigated in this project. Moisture content and temperature, as two important degradation factors in this type of insulation, have been studied to evaluate the performance of the proposed technique in the diagnostics of the oil-impregnated paper. The results are verified with the dielectric response obtained through commercial instruments. The results show that the proposed technique has the ability to track the changes in dielectric response due to the moisture content and temperature. Measurements were done at both highvoltage (40kV) and low voltage (10V) levels, and the corresponding circuit models to achieve reasonable accuracy for the results are discussed. Moving on from the material samples, a further study was done on three service-aged 150 kV bushings to investigate the feasibility of the technique on the diagnostics of power transformer bushings. Their dielectric response measured by the transient stimuli showed good agreement with their response obtained by the commercial instruments. The effect of the transformer winding on the transient response of the bushing is a further aspect of the real conditions for on-line diagnostics. This has been investigated through the simulation of transient models for transformers and bushings, and possible solutions for distinguishing the responses are presented. The proposed new on-line diagnostics technique by utilizing natural transients can provide information about the insulation system in a certain range of frequency without interrupting the operation or requiring an external voltage source. However, the validity range of the results depends on the bandwidth of the applied transients and other measurement considerations. This approach can be valuable in frequent monitoring of dielectric properties of the power transformers and their bushings as a complement to the other available on-line techniques. / <p>QC 20140409</p>
|
7 |
Conformal Thermal Models for Optimal Loading and Elapsed Life Estimation of Power TransformersPradhan, Manoj Kumar 08 1900 (has links)
Power and Generator Transformers are important and expensive elements of a power system. Inadvertent failure of Power Transformers would cause long interruption in power supply with consequent loss of reliability and revenue to the supply utilities. The mineral oil impregnated paper, OIP, is an insulation of choice in large power transformers in view of its excellent dielectric and other properties, besides being relatively inexpensive.
During the normal working regime of the transformer, the insulation thereof is subjected to various stresses, the more important among them are, electrical, thermal, mechanical and chemical. Each of these stresses, appearing singly, or in combination, would lead to a time variant deterioration in the properties of insulation, called Ageing.
This normal and inevitable process of degradation in the several essential properties of the insulation is irreversible, is a non-Markov physico-chemical reaction kinetic process. The speed or the rapidity of insulation deterioration is a very strong function of the magnitude of the stresses and the duration over which they acted. This is further compounded, if the stresses are in synergy. During the processes of ageing, some, or all the vital properties undergo subtle changes, more often, not in step with the duration of time over which the damage has been accumulated. Often, these changes are non monotonic, thus presenting a random or a chaotic picture and understanding the processes leading to eventual failure becomes difficult. But, there is some order in this chaos, in that, the time average of the changes over short intervals of time, seems to indicate some degree of predictability.
The status of insulation at any given point in time is assessed by measuring such of those properties as are sensitive to the amount of ageing and comparing it with earlier measurements. This procedure, called the Diagnostic or nondestructive Testing, has been in vogue for some time now.
Of the many parameters used as sensitive indices of the dynamics of insulation degradation, temporal changes in temperatures at different locations in the body of the transformer, more precisely, the winding hot spots (HST) and top oil temperature (TOT) are believed to give a fairly accurate indication of the rate of degradation. Further, an accurate estimation of the temperatures would enable to determine the loading limit (loadability) of power transformer.
To estimate the temperature rise reasonably accurately, one has to resort to classical mathematical techniques involving formulation and solution of boundary value problem of heat conduction under carefully prescribed boundary conditions. Several complications are encountered in the development of the governing equations for the emergent heat transfer problems. The more important among them are, the inhomogeneous composition of the insulation structure and of the conductor, divergent flow patterns of the oil phase and inordinately varying thermal properties of conductor and insulation.
Validation and reconfirmation of the findings of the thermal models can be made using state of the art methods, such as, Artificial Intelligence (AI) techniques, Artificial Neural Network (ANN) and Genetic Algorithm (GA).
Over the years, different criteria have been prescribed for the prediction of terminal or end of life (EOL) of equipment from the standpoint of its insulation. But, thus far, no straightforward and unequivocal criterion is forth coming. Calculation of elapsed life in line with the existing methodology, given by IEEE, IEC, introduces unacceptable degrees of uncertainty. It is needless to say that, any conformal procedure proposed in the accurate prediction of EOL, has to be based on a technically feasible and economically viable consideration. A systematic study for understanding the dynamical nature of ageing in transformers in actual service is precluded for reasons very well known. Laboratory experiments on prototypes or pro-rated units fabricated based on similarity studies, are performed under controlled conditions and at accelerated stress levels to reduce experimental time. The results thereof can then be judiciously extrapolated to normal operating conditions and for full size equipment.
The terms of reference of the present work are as follows;
1. Computation of TOT and HST
Theoretical model based on Boundary Value Problem of Heat Conduction
Application of AI Techniques
2. Experimental Investigation for estimating the Elapsed Life of transformers
Based on the experimental investigation a semi-empirical expression has been developed to estimate the loss of life of power and station transformer by analyzing gas content and furfural dissolved in oil without performing off-line and destructive tests.
|
Page generated in 0.1207 seconds