• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Low-Cost, Compact Electrochemical Analyzer Based on an Open-Source Microcontroller

Addo, Michael 25 April 2023 (has links)
Electrochemical measurements are utilized in various fields, including healthcare (e.g., potentiometric measurements for electrolytes in blood and blood gas, amperometric biosensing of glucose as in blood glucose meters), water quality (e.g., pH measurement, voltammetric analyses for heavy metals), and energy. Much of the appeal of electrochemical analyses can be attributed to the relative simplicity, low cost and lack of maintenance associated with electrochemical instruments, along with techniques that can exhibit high sensitivity and selectivity, wide linear dynamic range, and low limits of detection for many analytes. While commercial electrochemical analyzers are less expensive than many other instruments for chemical analyses and are available from various manufacturers, versatility and performance often coincide with added expense. Recently, the development of low-cost, adaptable, open-source chemical instruments, including electrochemical analyzers, has emerged as a topic of great interest in the scientific community. In contrast to commercial instruments, for which schematics and underlying operation details are often obscured – severely limiting modifications and improvements, creators of open-source instruments release all the necessary information for reproduction of the hardware and software. As a result, open-source instruments not only serve as excellent teaching tools for novices to gain experience in electronics and programming, but also present opportunity to design and develop low-cost, portable instruments, which have particular significance for point-of-care sensing applications, use in resource-limited settings, and the rapidly developing field of on-body sensors. In this work, we report the design of a low-cost, compact electrochemical analyzer based on an open-source Arduino microcontroller. The instrument is capable of performing electrochemical analyses such as cyclic and linear sweep voltammetry with an operating range of ± 138 ��A and ± 1.65 V. Performance of the platform is investigated with low-cost pencil graphite electrodes and results compared to commercial potentiostats.

Page generated in 0.0926 seconds