Spelling suggestions: "subject:"opioid"" "subject:"apioid""
271 |
A biochemical and pharmacological characterisation of some endogenous and exogenous κ opioid ligandsBell, Katrina Margaret January 1994 (has links)
An investigation of the interaction of stable opioid/ligands and unstable opioid peptides with opioid receptors in guinea pig brain, guinea pig myenteric plexus and mouse vas deferens has been carried out. The initial aim of the study was to further characterise K opioid receptors, using binding assays and isolated tissue bioassays. The second aim was to determine the true affinity and potency of small dynorphin peptides for the K opioid receptor and to determine if metabolism of the peptides to non K opioid receptor-preferring products contributes to their observed in vitro pharmacology.
|
272 |
Psychopharmakotherapie in der stationären Medikamentenentzugsbehandlung - eine retrospektive Untersuchung der psychiatrischen Behandlungspraxis / Psychopharmacotherapy in the withdrawal treatment of inpatients with substance use disorderGiller, Teresa 15 November 2016 (has links)
No description available.
|
273 |
OPPOSING ROLES OF THE μ-OPIOID AND NOCICEPTIN/ORPHANIN FQ RECEPTORS IN OLIGODENDROCYTE DEVELOPMENT AND MYELINATIONVestal-Laborde, Allison 01 January 2012 (has links)
While the classical function of myelin is to facilitate saltatory conduction, this membrane and the myelin-making oligodendrocytes (OLGs) are now recognized as regulators of plasticity and remodeling in the central nervous system (CNS). Thus, OLG maturation and myelination are highly vulnerable processes along CNS development. We previously showed that rat brain myelination is altered by perinatal exposure to buprenorphine, an opioid analogue in clinical trials for the treatment of pregnant opioid addicts. We now found that the in vivo effects on myelination could result from direct alteration in the balance between μ-opioid receptor (MOR) and nociceptin/orphanin FQ receptor (NOPR) activities in the OLGs. Furthermore, we found that myelination could also be affected by the FDA-approved methadone. A delicate balance between MOR and NOPR signaling may play a crucial role timing OLG maturation and myelin formation and exogenous opioids may disrupt this interplay, altering the developmental pattern of brain myelination.
|
274 |
The Prescription Opioid Epidemic: How it Happened and SolutionsHagemeier, Nicholas E., Barnes, J. Nile, Strey, Kasey 12 April 2017 (has links)
Rates of prescription drug misuse in Texas are alarmingly high. One in five Texas high school students have taken prescription drugs without a doctor’s prescription. In 2015, Texas had the second highest total healthcare costs from opioid abuse in the nation ($1.96 billion), and Texas is home to four of the top 25 cities in the U.S. for opioid abuse. Meanwhile, only one in three prescribers is using the statewide Prescription Drug Monitoring Program (PDMP), leading to a massive loss of data. There is substantial need for increased infrastructure and prevention measures in Texas, especially related to the emergence of prescription drug misuse.
This panel will describe the current landscape of prescription drug misuse and its consequences, discuss strategies to turn down misuse, and explain the proactive approach Texas is taking to enhance misuse prevention and data infrastructure across the state.
|
275 |
A novel mhealth application for improving HIV and Hepatitis C knowledge in individuals with opioid use disorderOchalek, Taylor A. 01 January 2018 (has links)
Aims: Untreated opioid use disorder (OUD) is associated with overdose, premature death and infectious disease, including human immunodeficiency virus (HIV) and Hepatitis C (HCV). While prior studies have shown that educational interventions are associated with improvements in HIV and HCV knowledge and reductions in risk behaviors, those examined to date have typically been time- and resource-intensive. We recently developed an HIV+HCV Education intervention which aims to improve HIV and HCV knowledge in a single visit using an automated iPad platform. In this project, we examined its ability, using a within-subject evaluation, to improve knowledge of HIV and HCV transmission and risks among adults with OUD.
Methods: Participants were 25 adults with OUD who were enrolled in a 12-week randomized trial evaluating the efficacy of an Interim Buprenorphine Treatment (IBT) for reducing illicit opioid use while awaiting entry into community-based opioid treatment. Participants completed a baseline HIV+HCV knowledge assessment (Pre-Test) followed by corrective feedback, both administered via iPad. They then completed an interactive HIV flipbook and animated HCV video, also on iPad, followed by a second administration of the knowledge assessment (Post-Test). Finally, to evaluate whether any changes in knowledge persisted over time, the HIV+HCV assessment was administered again at 4 and 12 weeks following study intake.
Results: At baseline (Pre-Test), participants answered 69% and 65% of items correctly on the HIV and HCV assessments, respectively. After completing the educational intervention, participants answered 86% of items correctly on both the HIV and HCV assessments (p’s<.001). These improvements in knowledge also persisted throughout the three-month study, with scores at Week 4 and 12 timepoints significantly greater than baseline (p’s<.001).
Conclusion: An HIV+Hepatitis Education intervention delivered via a portable, automated iPad platform may produce significant and persistent improvements in HIV and HCV knowledge among adults with OUD. These data provide additional support for the use of mobile educational interventions for enhancing HIV and HCV knowledge in individuals at elevated risk for infectious disease.
Support: This trial was supported by NIDA R34 DA3730385 (Sigmon) with additional support by NIDA T32 DA007242 (Higgins).
|
276 |
Feasibility and outcome of substitution treatment of heroin-dependent patients in specialized substitution centers and primary care facilities in Germany: A naturalistic study in 2694 patientsWittchen, Hans-Ulrich, Apelt, Sabine M., Soyka, Michael, Gastpar, Markus, Backmund, Markus, Gölz, Jörg, Kraus, Michael R., Tretter, Felix, Schäfer, Martin, Siegert, Jens, Scherbaum, Norbert, Rehm, Jürgen, Bühringer, Gerhard 11 April 2013 (has links) (PDF)
Background: In many countries, buprenorphine and methadone are licensed for the maintenance treatment (MT) of opioid dependence. Despite many short-term studies, little is known about the long-term (12-month) effects of these treatments in different settings, i.e. primary care-based (PMC) and specialized substitution centers (SSCs).
Objectives: To describe over a period of 12 months: (1) mortality, retention and abstinence rates; (2) changes in concomitant drug use, somatic and mental health; and (3) to explore differences between different types of provider settings.
Methods: 12-Month prospective-longitudinal naturalistic study with four waves of assessment in a prevalence sample of N= 2694 maintenance patients, recruited from a nationally representative sample of N= 223 substitution physicians.
Results: The 12-month retention rate was 75%; the mortality rate 1.1%. 4.1% of patients became “abstinent” during follow-up. 7% were referred to drug-free addiction treatment. Concomitant drug use decreased and somatic health status improved. No significant improvements were observed for mental health and quality of life. When controlling for initial severity, small PMC settings revealed better retention, abstinence and concomitant drug use rates.
Conclusion: The study underlines the overall 12-month effectiveness of various forms of agonist MT. Findings reveal relatively high retention rates, low mortality rates, and improvements in most 12-month outcome domains, except for mental health and quality of life. PMC settings appear to be a good additional option to improve access to MTs.
|
277 |
Efficacy and side-effect profiles of lactulose, docusate sodium, and sennosides compared to PEG in opioid-induced constipation: A systematic reviewKerridge, Teresa A. Unknown Date
No description available.
|
278 |
Painful diabetic neuropathy: preclinical studies to improve therapeutic insight.Kathleen Otto Unknown Date (has links)
My PhD research studies, described in this thesis, were designed to document the temporal development of mechanical allodynia, a hallmark symptom of painful diabetic neuropathy (PDN), as well as opioid hyposensitivity using two different rat models of diabetes mellitus (DM). Specifically, the studies were conducted using the streptozotocin (STZ)-diabetic rat model of chemically-induced Type 1 diabetes in two different rat strains, as well as the Zucker Diabetic Fatty (ZDF) rat genetic model of Type 2 diabetes. Additionally, a longitudinal investigation of the effect of basal insulin replacement therapy to restore euglycaemia from 7-days post-STZ administration, on the development of mechanical allodynia in the hindpaws of the STZ-diabetic Wistar rat model of PDN, was conducted. The studies herein also included a longitudinal study to document the temporal development of mechanical allodynia and opioid hyposensitivity in the ZDF rat, which also examined the influence of dietary composition on the time course for the development of mechanical allodynia in the hindpaws, together with opioid hyposensitivity in these animals. In the final section of this thesis, the experiments were designed to examine possible mechanisms that may contribute to the development of opioid hyposensitivity in ZDF diabetic rats. These experiments involved the quantification of opioid receptor messenger ribonucleic acid (mRNA) gene expression as well as μ-opioid receptor (MOP-r) functional responses in tissues collected from 29-wk old diabetic ZDF rats relative to 7-wk old pre-diabetic control ZDF animals. In Chapter One, diabetes mellitus and more specifically its longterm complication, PDN, the focus of this doctoral research program, has been reviewed. Specifically, possible pathogenic mechanisms underlying mechanical allodynia, the relevant diabetic rodent models of PDN, use of insulin replacement therapy in diabetic rodents and its impact on hallmark symptoms of PDN, role of opioid pharmacology, the comparative efficacy of opioids in the treatment of PDN, and possible mechanisms that may underpin the development of opioid hyposensitivity in PDN, including the impact of altered excitatory neurotransmitters, have been reviewed. In Chapter Two, a preliminary study was conducted to investigate the efficacy of 4-wks treatment with Linplants (subcutaneous (s.c.) sustained-release bovine insulin implants) alone and in combination with ActRapid® (s.c. human insulin; 0.05 U to 3.5 U/100 g/day) with respect to glycaemic control in STZ-diabetic Wistar rats, and on acute diabetes characteristics for a 5-wk post-STZ administration period. Briefly, STZ-diabetic rats were divided into three groups: (1) rats which received no insulin treatment, (2) rats which were implanted with one s.c. Linplant at Day 7 post-STZ administration, and (3) rats which received one s.c. Linplant plus a once-daily injection of ActRapid® once diabetes was confirmed at 7-days post-STZ administration. The findings were that following implantation of a single Linplant at Day 7 post-STZ administration, euglycaemia was achieved in 50% of STZ-diabetic rats, with glycaemic control maintained for up to 4-wks post-implantation. Furthermore, once-daily injection of ActRapid™ to animals whose blood glucose levels (BGLs) were not well-controlled through use of Linplants alone, failed to achieve euglycaemia. It is possible that the ActRapid™ doses administered were not sufficient to achieve euglycaemia, and that increasing the doses may provide more effective glycaemic control. However, doubling the mean ActRapid™ dose from 1.63 (+ 0.3) U administered at Day 28 to 2.56 (+ 0.6) U administered at Day 34 post-STZ administration effectively only reduced BGLs by 1.3 mM to 11.6 + 1.6 mM. This suggests that although administering additional large doses of ActRapid™ to STZ-diabetic rats may eventually achieve euglycaemia, this method would presumably not be a more efficient method in achieving euglycaemia compared with the use of dosage-adjustable s.c. Linplants. Group (1) STZ-diabetic rats which were not treated with insulin developed diabetic signs including polydipsia, hyperphagia, decreased rate of body weight gain, and mechanical allodynia. Group (2) rats in which insulin treatment from 7-days post-STZ administration restored euglycaemia and reversed polydipsia and hyperphagia, were protected against the development of mechanical allodynia and reduced weight gain for the 5-wk study duration, while rats from Group (3) with incomplete glycaemic control developed levels of polydipsia, hyperphagia, reduced weight gain and mechanical allodynia intermediate between rats in Groups (1) and (2). These findings collectively suggest a direct correlation between the level of glycaemic control and the extent to which mechanical allodynia, a defining symptom of PDN, develops. In Chapter Three, the findings from the preliminary 5-wk study in Chapter Two were used to design a 24-wk longitudinal study of the temporal development of mechanical allodynia and opioid hyposensitivity in STZ-diabetic Wistar rats for comparison with the findings of a similar study previously undertaken by our laboratory using STZ-diabetic Dark Agouti rats (Nielsen et al, 2007). Additionally, this study examined the effects of tight glycaemic control achieved through the use of insulin implants as a means of potentially preventing the development of mechanical allodynia and opioid hyposensitivity for up to 24 weeks in STZ-diabetic Wistar rats. Briefly, STZ-diabetic rats were divided into 3 groups: (1) non-insulin treated STZ-diabetic Dark Agouti rats to provide comparison data with our laboratory’s previously published data in this rat strain (Nielsen et al, 2007), (2) non-insulin treated STZ-diabetic Wistar rats to examine possible between-species differences, and (3) STZ-diabetic Wistar rats which were treated with adjustable-dose s.c. Linplants from Day 7 post-STZ administration to maintain euglycaemia for the remainder of the 24-wk study period. In this 24-wk longitudinal study in STZ-diabetic rats, body weight, 24-hr water intake, paw withdrawal thresholds (PWTs) and BGLs were monitored at fortnightly intervals in all animals in order to document possible temporal changes in the development of diabetic signs and mechanical allodynia in the hindpaws respectively. STZ-diabetic rats underwent 6-wkly opioid antinociceptive testing, using single bolus doses of each of morphine and oxycodone with a 2-3 day washout period between individual opioids in order to assess the potential influence of both diabetes and glycaemic control on opioid potency in these animals. The findings demonstrate that non-insulin treated STZ-diabetic rats of both strains exhibited a decreased rate of body weight gain and polydipsia, as well as progressive development of mechanical allodynia in the hindpaws and loss of morphine potency. Importantly, STZ-diabetic Wistar rats which were treated with insulin to maintain euglycaemia from Day 7 post-STZ administration failed to develop these diabetic symptoms for the duration of the 24-wk study period, highlighting the importance of chronic hyperglycaemia in the development of mechanical allodynia and morphine hyposensitivity in the STZ-diabetic rodent model of PDN. The research described in Chapter Four involved a 22-wk longitudinal study of the development of diabetes and its longterm sensory nerve complications, viz mechanical allodynia and opioid hyposensitivity, in the ZDF rodent model of Type 2 diabetes commencing at 7-wks of age. This study also examined the influence of four different diets fed to separate groups of ZDF rats from 7-wks age, on the time course for the development of diabetes, mechanical allodynia in the hindpaws and opioid hyposensitivity in these animals. Briefly, ZDF rats were sub-divided into four dietary groups, each of which was fed one of the four following diets for 22-wks commencing at 7-wks of age, viz: (a) Purina 5008™, (b) a domestically-produced rat chow of similar composition to Purina 5008 (termed Purina Composition diet), (c) a Diabetogenic diet, or (d) Standard Rat Chow. All rats underwent once-fortnightly measurement of BGLs, body weight, 24-hr water intake, and measurement of PWTs in the hindpaws. Additionally, ZDF rats underwent opioid antinociceptive testing, similar to that previously described for STZ-diabetic rats (Chapter Three), to investigate the influence of diabetes and dietary composition on the antinociceptive potency of single bolus doses of morphine and oxycodone administered at 6-weekly intervals over a 22-wk study period. The afore-mentioned data were compared with the respective data obtained from the pre-diabetic control group of ZDF rats that were euthanised at 7-wks of age prior to the development of hyperglycaemia. The results demonstrate that the ZDF rat develops mechanical allodynia in the hindpaws and opioid hyposensitivity in a temporal fashion, in a manner similar to that previously documented for the STZ-diabetic Wistar rat model of Type 1 diabetes (Chapter Three). For the four diets assessed, there did not appear to be significant differences between dietary groups with respect to the time course and extent of development of hyperglycaemia, mechanical allodynia or opioid hyposensitivity in the ZDF rat model of PDN. The study described in Chapter Five investigated the effect of both diabetes and dietary composition on opioid receptor mRNA expression in tissue samples collected from the five groups of ZDF rats used in the behavioural studies described in Chapter Four and outlined above. Briefly, mRNA expression for each of the - (MOP), - (DOP), and - (KOP) receptors were quantified in mid-brain and spinal cord tissues prepared from 29-wk old diabetic ZDF rats maintained on one of four diets from 7-wks age, and compared with the respective expression levels in samples prepared from pre-diabetic ZDF rats euthanised at 7-wks of age. Overall, the findings suggest that diabetes does not alter opioid receptor mRNA expression in the mid-brain or spinal cord of diabetic ZDF rats at 29-wks of age relative to the corresponding levels of mRNA expression in the mid-brain and spinal cord of pre-diabetic ZDF rats at 7-wks of age. Hence, the marked reduction in the anti-allodynic potency of morphine and oxycodone observed in diabetic ZDF rats at 29-wks of age relative to that observed in pre-diabetic ZDF rats at 7-wks of age (Chapter Four) does not appear to be associated with a decrease in opioid receptor mRNA expression. In Chapter Six, the effect of both advanced diabetes and dietary composition on opioid-agonist stimulated [35S]GTPγS binding was examined in spinal cord tissue membranes from the ZDF rat. Specifically, [35S]GTPγS binding assays were used to assess the ability of a -opioid ligand (DAMGO) to stimulate -opioid receptor coupling to inhibitory G proteins in homogenates prepared from spinal cord samples of 29-wk old ZDF rats maintained on one of four different diets from 7-wks age (Chapter Four), relative to [35S]GTPγS binding in homogenates prepared from spinal cord samples of pre-diabetic 7-wk old ZDF rats. As specific MOP agonist-stimulated [35S]GTPγS binding was significantly decreased in spinal cord homogenates from diabetic ZDF rats at 29-wks of age relative to that for pre-diabetic ZDF rats (7-wks), this may contribute, at least in part, to the morphine hyposensitivity observed in diabetic ZDF rats at 29-wks of age relative to the pre-diabetic ZDF group. However, closer examination of these data revealed that specific MOP agonist-stimulated [35S]GTPγS binding above basal did not differ significantly between the pre-diabetic group and the longterm diabetic group of ZDF rats. Instead, there was significantly lower basal [35S]GTPγS binding in the spinal cord of ZDF rats at 29-wks c.f. 7-wks of age. Together, the findings suggest that impaired basal G-protein function rather than impaired coupling of MOP-r to its inhibitory G-protein may, at least in part, underpin -opioid agonist hyposensitivity in 29-wk ZDF rats. Finally, Chapter 7 contains a brief description of the main conclusions and discussion of the relevance of this doctoral research project, including potential future research directions.
|
279 |
Neurobiology of opioid addictionRudén, Ludvig January 2018 (has links)
Since the use of opioids started to emerge for analgesic reasons in the 19th century with the synthetization of morphine, opioids have been studied rigorously to better understand its effects on the brain. This thesis shows that both the analgesic effects and the reinforcing effects of opioids are mediated by the same receptor, the mu opioid receptor (MOR). MOR activity has been correlated to both primary and secondary reinforcers and should be considered to cause positive reinforcement together with increases in dopamine transmission for all drugs of abuse, and not only in relation to opioids. Opioid tolerance, dependence and even addiction are to some extent thought to relate to opioids’ acute effect of cyclic adenosine monophosphate (cAMP) superactivation. Based upon these findings, the allostasis theory of addiction is considered to be the most suitable in defining opioid addiction. The theory claims that the mesolimbic dopamine system becomes sensitized, increasing the attractiveness of opioids. This while counteradaptation increases the pleasurable tolerance of opioids, encouraging the user to increase its intake for the same initial reward. Furthermore the theory claims that cAMP superactivation is causing an unfolding effect of neurobiological and neurochemical expressions which leads to the disorder of addiction. cAMP superactivation is mediating the negatively reinforcing aspects of opioid addiction together with changes to corticotropin-releasing factor (CRF) in the brain stress system, such as the hypothalamic-pituitary-adrenal (HPA) axis and the extended amygdala.
|
280 |
Structural and pharmacological studies of synthetic and endogenous opioid receptor ligandsPatel, Dinesh January 1992 (has links)
The interaction of a diverse set of opioid alkaloids and peptides with various opioid receptors has been examined using biochemical and pharmacological techniques. Structural information on the compounds was obtained from single crystal X-ray diffraction and nuclear magnetic resonance studies, and modelled by computational methods. The introduction of a dithiocarbazate moiety into the 7a-position of a bridged thebaine was shown to afford a degree of μ selectivity in this class of nonselective compounds. X-ray diffraction analysis of this compound and comparison with the structure of [Met5]enkephalin showed the importance of the sulphydryl moiety. The conformation of [Leu5]enkephalin, in which the amino acid methionine is replaced by leucine, at the same receptor is unlikely to be similar. A series of morphinan derivatives which had been developed as μ-antagonists were evaluated. Substitution patterns of the morphinan ring nucleus and their effect upon activity were examined. X-ray analysis of several key compounds was performed. Unexpectedly a 3-hydroxymorphinan-6-one analogue showed an ability to differentiate apparently similar opioid Kreceptors. The implications in terms of K-receptor subtypes are discussed. The opioid receptor binding characteristics of structurally diverse K-receptor ligands were examined in two different buffer systems. Electrostatic modelling of the K-ligands, based upon crystal structure coordinates, was performed. From electrostatic potential maps a requirement for ligands acting at Kreceptors is postulated. Solution conformations of the endogenous K-ligand, dynorphin A(1-8), were determined by nuclear magnetic resonance studies and compared with the wo preferring [Leu5]enkephalin. Models were proposed based upon dihedral angles determined from HCtl-NH coupling constants, amide proton-deuteron exchange and amide proton temperature coefficient data. Candidate conformations were shown to be stable under dynamic simulation conditions. Electrostatic modelling of a chosen dynorphin An-8) conformation gave results comparable with the observed electrostatic model of the K-ligands. The proposed model is discussed in terms of its suitability as a retro-model for the active site ofthe K-opioid receptor.
|
Page generated in 0.0196 seconds