Spelling suggestions: "subject:"doptimisation algorithm"" "subject:"d'optimisation algorithm""
1 |
Quality-of-service-based approach for dimensioning and optimisation of mobile cellular networksKourtis, Stamatis January 2002 (has links)
Next generation high performance systems are being standardised assuming a generic service delivery paradigm capable of supporting a diversity of circuit and importantly packet services. However, this flexibility comes at a cost which is the increased complexity of the dimensioning, planning, optimisation and QoS provisioning with respect to previous generation single-service mobile systems. Accurate system dimensioning is of fundamental importance and this thesis explores this requirement at two levels. Firstly, it departs from the common assumption of static users and examines what is the impact of mobile users on the system capacity. Secondly, it examines the impact of voice and web browsing services on the system dimensioning. In spite of the accuracy of dimensioning and planning, load imbalances occur for different reasons, which result in small-scale congestion events in the system. A load equalisation scheme is proposed which utilises the overlapping areas between neighbouring cells in order to eliminate the load imbalances. Essentially, coverage overlapping is needed in order to achieve ubiquitous coverage, hence to eliminate coverage holes. However, excessive overlapping results in capacity loss in interference-limited systems which is virtually the case with all modern systems. Radio coverage optimisation is needed but today this is performed on a cell-by- cell basis producing sub-optimal results. This thesis proposes an advanced coverage optimisation algorithm which takes into consideration simultaneously all cells within the considered area. For the operators (and also the proposed coverage optimisation algorithm) it is Imperative to have accurate path loss predictions. However, contemporary planning tools come with certain limitations, and often time-consuming and expensive measurement campaigns are organised. This thesis builds on the assumption that mobile systems will be able to locate the position of mobile terminals and subsequently proposes an automated process for the estimation of the radio coverage of the network. Lastly, the assumption regarding the positioning capabilities of the mobile systems Is further exploited in order to enhance the QoS guarantees to mobile users. Thus, various algorithms are examined which perform handovers towards base stations which maximise the survivability of the handed over calls.
|
2 |
Applying an Analytical Approach to Shop-Floor Scheduling: A Case StudySwinehart, Kerry, Yasin, Mahmoud, Guimaraes, Eduardo 01 January 1996 (has links)
In the light of the complex and dynamic factors that exist in a typical production facility, manual development of an optimal shop-floor schedule is computationally impractical. This paper discusses the effective use of an heuristic algorithm approach to shop-floor scheduling at the TRW Rack and Pinion Division (RPD) Plant in Rogersville, Tennessee. The study documents the introduction of FAST, a computerised scheduling system that employs the Genetic Optimisation Algorithm. Results demonstrate a real potential advantage using this system for shop-floor scheduling, thus facilitating TRWs journey of continuous improvement.
|
3 |
Optimisation techniques for combustor designMotsamai, O.S. (Oboetswe Seraga) 07 April 2009 (has links)
For gas turbines, the demand for high-performance, more efficient and longer-life turbine blades is increasing. This is especially so, now that there is a need for high-power and low-weight aircraft gas turbines. Thus, the search for improved design methodologies for the optimisation of combustor exit temperature profiles enjoys high priority. Traditional experimental methods are found to be too time-consuming and costly, and they do not always achieve near-optimal designs. In addition to the above deficiencies, methods based on semi-empirical correlations are found to be lacking in performing three-dimensional analyses and these methods cannot be used for parametric design optimisation. Computational fluid dynamics has established itself as a viable alternative to reduce the amount of experimentation needed, resulting in a reduction in the time scales and costs of the design process. Furthermore, computational fluid dynamics provides more insight into the flow process, which is not available through experimentation only. However, the fact remains that, because of the trial-and-error nature of adjusting the parameters of the traditional optimisation techniques used in this field, the designs reached cannot be called “optimum”. The trial-and-error process depends a great deal on the skill and experience of the designer. Also, the above technologies inhibit the improvement of the gas turbine power output by limiting the highest exit temperature possible, putting more pressure on turbine blade cooling technologies. This limitation to technology can be overcome by implementing a search algorithm capable of finding optimal design parameters. Such an algorithm will perform an optimum search prior to computational fluid dynamics analysis and rig testing. In this thesis, an efficient methodology is proposed for the design optimisation of a gas turbine combustor exit temperature profile. The methodology involves the combination of computational fluid dynamics with a gradient-based mathematical optimiser, using successive objective and constraint function approximations (Dynamic-Q) to obtain the optimum design. The methodology is tested on three cases, namely: (a) The first case involves the optimisation of the combustor exit temperature profile with two design variables related to the dilution holes, which is a common procedure. The combustor exit temperature profile was optimised, and the pattern factor improved, but pressure drop was very high. (b) The second case involves the optimisation of the combustor exit temperature profile with four design variables, one equality constraint and one inequality constraint based on pressure loss. The combustor exit temperature profile was also optimised within the constraints of pressure. Both the combustor exit temperature profile and pattern factor were improved. (c) The third case involves the optimisation of the combustor exit temperature profile with five design variables. The swirler angle and primary hole parameters were included in order to allow for the effect of the central toroidal recirculation zone on the combustor exit temperature profile. Pressure loss was also constrained to a certain maximum. The three cases show that a relatively recent mathematical optimiser (Dynamic-Q), combined with computational fluid dynamics, can be considered a strong alternative to the design optimisation of a gas turbine combustor exit temperature profile. This is due to the fact that the proposed methodology provides designs that can be called near-optimal, when compared with that yielded by traditional methods and computational fluid dynamics alone. / Thesis (PhD)--University of Pretoria, 2009. / Mechanical and Aeronautical Engineering / unrestricted
|
4 |
Performance enhancement in proton exchange membrane cell - numerical modeling and optimisationObayopo, Surajudeen Olanrewaju 12 July 2013 (has links)
Sustainable growth and development in a society requires energy supply that is efficient, affordable, readily available and, in the long term, sustainable without causing negative societal impacts, such as environmental pollution and its attendant consequences. In this respect, proton exchange membrane (PEM) fuel cells offer a promising alternative to existing conventional fossil fuel sources for transport and stationary applications due to its high efficiency, low-temperature operation, high power density, fast start-up and its portability for mobile applications. However, to fully harness the potential of PEM fuel cells, there is a need for improvement in the operational performance, durability and reliability during usage. There is also a need to reduce the cost of production to achieve commercialisation and thus compete with existing energy sources. The present study has therefore focused on developing novel approaches aimed at improving output performance for this class of fuel cell. In this study, an innovative combined numerical computation and optimisation techniques, which could serve as alternative to the laborious and time-consuming trial-and-error approach to fuel cell design, is presented. In this novel approach, the limitation to the optimal design of a fuel cell was overcome by the search algorithm (Dynamic-Q) which is robust at finding optimal design parameters. The methodology involves integrating the computational fluid dynamics equations with a gradient-based optimiser (Dynamic-Q) which uses the successive objective and constraint function approximations to obtain the optimum design parameters. Specifically, using this methodology, we optimised the PEM fuel cell internal structures, such as the gas channels, gas diffusion layer (GDL) - relative thickness and porosity - and reactant gas transport, with the aim of maximising the net power output. Thermal-cooling modelling technique was also conducted to maximise the system performance at elevated working temperatures. The study started with a steady-state three-dimensional computational model to study the performance of a single channel proton exchange membrane fuel cell under varying operating conditions and combined effect of these operating conditions was also investigated. From the results, temperature, gas diffusion layer porosity, cathode gas mass flow rate and species flow orientation significantly affect the performance of the fuel cell. The effect of the operating and design parameters on PEM fuel cell performance is also more dominant at low operating cell voltages than at higher operating fuel cell voltages. In addition, this study establishes the need to match the PEM fuel cell parameters such as porosity, species reactant mass flow rates and fuel gas channels geometry in the system design for maximum power output. This study also presents a novel design, using pin fins, to enhance the performance of the PEM fuel cell through optimised reactant gas transport at a reduced pumping power requirement for the reactant gases. The results obtained indicated that the flow Reynolds number had a significant effect on the flow field and the diffusion of the reactant gas through the GDL medium. In addition, an enhanced fuel cell performance was achieved using pin fins in a fuel cell gas channel, which ensured high performance and low fuel channel pressure drop of the fuel cell system. It should be noted that this study is the first attempt at enhancing the oxygen mass transfer through the PEM fuel cell GDL at reduced pressure drop, using pin fin. Finally, the impact of cooling channel geometric configuration (in combination with stoichiometry ratio, relative humidity and coolant Reynolds number) on effective thermal heat transfer and performance in the fuel cell system was investigated. This is with a view to determine effective thermal management designs for this class of fuel cell. Numerical results shows that operating parameters such as stoichiometry ratio, relative humidity and cooling channel aspect ratio have significant effect on fuel cell performance, primarily by determining the level of membrane dehydration of the PEM fuel cell. The result showed the possibility of operating a PEM fuel cell beyond the critical temperature ( 80„aC), using the combined optimised stoichiometry ratio, relative humidity and cooling channel geometry without the need for special temperature resistant materials for the PEM fuel cell which are very expensive. In summary, the results from this study demonstrate the potential of optimisation technique in improving PEM fuel cell design. Overall, this study will add to the knowledge base needed to produce generic design information for fuel cell systems, which can be applied to better designs of fuel cell stacks. / Thesis (PhD)--University of Pretoria, 2012. / Mechanical and Aeronautical Engineering / unrestricted
|
5 |
Contribuciones al modelado y diagnóstico de fallos en PEMFC para mejorar la fiabilidad en sistemas híbridos renovablesAriza Chacón, Helbert Eduardo 15 April 2024 (has links)
[ES] Las pilas de combustibles son dispositivos de un coste elevado y frágiles ante ambientes contaminados o condiciones inadecuadas de operación como: temperaturas extremas o mala gestión del agua producida como residuo de la pila. Para mejorar la fiabilidad de una pila de combustible es necesario diagnosticar de una manera oportuna los fallos y así evitar daños que reduzcan el desempeño del módulo o que lo inhabiliten. Este trabajo busca contribuir al mejoramiento de la fiabilidad de las pilas de combustible de baja temperatura y de esta forma favorecer el uso de hidrógeno en la transición a una energía descarbonizada. Para lograrlo, se realizaron tres actividades principales: modelado de una pila de hidrógeno, ajuste paramétrico del modelo desarrollado y, por último, aplicación de técnicas de diagnóstico de fallos basados en modelos. En el laboratorio de Recursos Energéticos Renovables Distribuidos LabDER de la Universitat Politècnica de València, se estudia el desempeño de sistemas híbridos renovables, incluyendo una línea de hidrógeno, desde la producción, almacenamiento y reconversión en electricidad en una pila de combustible, por tanto, se ha podido validar el modelo.
En un primer momento se identificó la necesidad de un modelo que emplee la temperatura como señal de salida y que retroalimente el sistema, y que tuviese en cuenta señales propias del módulo comercial; sin embargo, el uso de la temperatura como señal y la no linealidad de las ecuaciones físicas, químicas, eléctricas y empleadas, generan un modelo altamente complejo. El ajuste paramétrico del modelo se realizó empleando algoritmos de optimización. Tomando como base al algoritmo de Enjambre de Partículas, se desarrolló una nueva propuesta llamada Scout GA, este algoritmo fue utilizado en otras aplicaciones y pruebas de convergencia para verificar su desempeño frente al fenómeno de estancamiento prematuro y logrando mejorar la precisión y velocidad de convergencia de otras propuestas.
Como resultado de la validación de este modelo, en una primera simulación usando datos reales de funcionamiento correspondientes a 1500 segundos, el error de simulación fue del 2,21% en la señal de tensión y del 1,97% en la señal de temperatura, obteniendo un error medio del 2,09%. En un segundo conjunto de datos de algo más de 2.500 segundos de funcionamiento, el error de simulación fue del 2,40% y del 1,96% para las señales de tensión y temperatura, respectivamente. Se estima que el error medio de simulación para ambas señales y condiciones de funcionamiento similares es inferior al 2,5%.
Buscando mejorar la fiabilidad de la pila, se realizó el trabajo de diagnóstico de fallos, este partió de la simulación de fallos, mediante la modificación de algunas señales de entrada del modelo, los fallos se caracterizaron mediante el tratamiento estadístico de 12 residuos, obteniendo firmas de fallos, que, en su conjunto, formaron una matriz de fallos. Luego, un algoritmo de diagnóstico propuesto permitió identificar y aislar 14 fallos. permitiendo concluir que, el modelo predice eficazmente los fallos de las pilas PEMFC y podría extrapolarse a otras pilas de combustible. / [CA] Les piles de combustibles són dispositius d'un cost elevat i fràgils davant ambients contaminats o condicions inadequades d'operació com: temperatures extremes o dolenta gestió de l'aigua produïda com a residu de la pila. Per a millorar la fiabilitat d'una pila de combustible és necessari diagnosticar d'una manera oportuna les fallades i així evitar danys que reduïsquen l'acompliment del mòdul o que l'inhabiliten. Este treball busca contribuir al millorament de la fiabilitat de les piles de combustible de baixa temperatura i d'esta manera afavorir l'ús d'hidrogen en la transició a una energia *descarbonizada. Per a aconseguir-ho, es van realitzar tres activitats principals: modelatge d'una pila d'hidrogen, ajust paramètric del model desenvolupat i, finalment, aplicació de tècniques de diagnòstic de fallades basades en models. En el laboratori de Recursos Energètics Renovables Distribuïts *LabDER de la Universitat Politècnica de València, s'estudia l'acompliment de sistemes híbrids renovables, incloent-hi una línia d'hidrogen, des de la producció, emmagatzematge i reconversió en electricitat en una pila de combustible, per tant, s'ha pogut validar el model.
En un primer moment es va identificar la necessitat d'un model que empre la temperatura com a senyal d'eixida i que retroalimente el sistema, i que tinguera en compte senyals propis del mòdul comercial, no obstant això, l'ús de la temperatura i la no linealitat de les equacions físiques, químiques, elèctriques i tèrmiques empleades, deriven en un model altament complex. L'ajust paramètric del model de pila de combustible es va realitzar emprant algorismes d'optimització. Prenent com a base a l'algorisme d'Eixam de Partícules, es va desenvolupar una nova proposta anomenada Scout GA, aquest algorisme va ser utilitzat en altres aplicacions i proves de convergència per a verificar el seu acompliment enfront del fenomen d'estancament prematur i aconseguint millorar la precisió i velocitat de convergència d'altres propostes. La simulació i identificació del model té un cost computacional entre 7 i 20 ms per iteració, on es van aconseguir errors de simulació menors al 2.5%
Com a resultat de la validació d'aquest model, en una primera simulació usant dades reals de funcionament corresponents a 1500 segons, l'error de simulació va ser del 2,21% en el senyal de tensió, del 1,97% en el senyal de temperatura i un error mitjà del 2,09%. En un segon conjunt de dades d'una mica més de 2.500 segons de funcionament, l'error de simulació va ser del 2,40% i del 1,96% per als senyals de tensió i temperatura, respectivament. S'estima que l'error mitjà de simulació per a tots dos senyals i condicions de funcionament similars és inferior al 2,5%.
Buscant millorar la fiabilitat de la pila, es va fer el treball de diagnòstic de fallades, aquest va partir de la simulació de fallades, mitjançant la modificació d'alguns senyals d'entrada del model, les fallades es van caracteritzar mitjançant el tractament estadístic de 12 residus, obtenint signatures de fallades, que en el seu conjunt, van formar una matriu de fallades. després un algorisme de diagnòstic proposat, va permetre identificar i aïllar 14 fallades. Permetent concloure que, el model prediu eficaçment les fallades de les piles PEMFC i podria extrapolar-se a altres piles de combustible. / [EN] Fuel cells are high-cost devices that are fragile in contaminated environments or in inadequate operating conditions, such as extreme temperatures or poor water management, produced as battery waste. To improve the reliability of a fuel cell, it is necessary to diagnose failures promptly and thus avoid damage that reduces the module's performance or disables it. This work seeks to contribute to improving the reliability of low-temperature fuel cells and thus promote the use of hydrogen in the transition to decarbonized energy. To achieve this, three main activities were carried out: modeling a hydrogen fuel cell, parametric adjustment of the developed model, and application of model-based fault diagnosis techniques. In the LabDER Distributed Renewable Energy Resources laboratory of the Polytechnic University of Valencia, the performance of renewable hybrid systems is studied, including a hydrogen line, from production, storage, and reconversion into electricity in a fuel cell, therefore, has been able to validate the model.
Initially, a fuel cell model that uses temperature as an in/output signal is required. Also, the model must be able to use the reals signals supplied for the commercial module. However, using temperature and an equation set that includes the non-linearity of the physical, chemical, electrical, and thermal equations resulted in a highly complex model. The parametric adjustment of the fuel cell model was performed using optimization algorithms. Based on the Particle Swarm algorithm, a new proposal called Scout GA was developed. This algorithm was used in other applications and convergence tests to verify its performance against the premature stagnation phenomenon and improved the accuracy and speed of convergence of other proposals. The simulation and identification of the model have a computational cost between 7 and 20 ms per iteration, where simulation errors of less than 2.5% were achieved.
As a result of the validation of this model, in a first simulation using real operating data corresponding to 1,500 seconds, the simulation error was 2.21% for the voltage signal, 1.97% for the temperature signal, and an average error of 2.09%. In a second data set for slightly more than 2500 seconds of operation, the simulation error was 2.40% and 1.96% for the voltage and temperature signals, respectively. The average simulation error for both signals and similar operating conditions is estimated to be less than 2.5%.
To improve the reliability of the stack, the fault diagnosis work was carried out, starting from the simulation of faults by modifying some input signals of the model; the faults were characterized by the statistical treatment of 12 residuals, obtaining fault signatures, which formed a fault matrix. Then, a proposed diagnostic algorithm allowed to identify and isolate 14 faults. Allowing to conclude that the model effectively predicts the PEMFC stack faults and could be extrapolated to other fuel cells. / Ariza Chacón, HE. (2024). Contribuciones al modelado y diagnóstico de fallos en PEMFC para mejorar la fiabilidad en sistemas híbridos renovables [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/203614
|
Page generated in 0.0954 seconds