• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 30
  • 2
  • Tagged with
  • 70
  • 70
  • 42
  • 39
  • 16
  • 16
  • 15
  • 14
  • 13
  • 13
  • 12
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Convex matrix sparsity for demixing with an application to graphical model structure estimation / Parcimonie matricielle convexe pour les problèmes de démixage avec une application à l'apprentissage de structure de modèles graphiques

Vinyes, Marina 27 November 2018 (has links)
En apprentissage automatique on a pour but d'apprendre un modèle, à partir de données, qui soit capable de faire des prédictions sur des nouvelles données (pas explorées auparavant). Pour obtenir un modèle qui puisse se généraliser sur les nouvelles données, et éviter le sur-apprentissage, nous devons restreindre le modèle. Ces restrictions sont généralement une connaissance a priori de la structure du modèle. Les premières approches considérées dans la littérature sont la régularisation de Tikhonov et plus tard le Lasso pour induire de la parcimonie dans la solution. La parcimonie fait partie d'un concept fondamental en apprentissage automatique. Les modèles parcimonieux sont attrayants car ils offrent plus d'interprétabilité et une meilleure généralisation (en évitant le sur-apprentissage) en induisant un nombre réduit de paramètres dans le modèle. Au-delà de la parcimonie générale et dans de nombreux cas, les modèles sont structurellement contraints et ont une représentation simple de certains éléments fondamentaux, comme par exemple une collection de vecteurs, matrices ou tenseurs spécifiques. Ces éléments fondamentaux sont appelés atomes. Dans ce contexte, les normes atomiques fournissent un cadre général pour estimer ce type de modèles. périodes de modèles. Le but de cette thèse est d'utiliser le cadre de parcimonie convexe fourni par les normes atomiques pour étudier une forme de parcimonie matricielle. Tout d'abord, nous développons un algorithme efficace basé sur les méthodes de Frank-Wolfe et qui est particulièrement adapté pour résoudre des problèmes convexes régularisés par une norme atomique. Nous nous concentrons ensuite sur l'estimation de la structure des modèles graphiques gaussiens, où la structure du modèle est encodée dans la matrice de précision et nous étudions le cas avec des variables manquantes. Nous proposons une formulation convexe avec une approche algorithmique et fournissons un résultat théorique qui énonce les conditions nécessaires pour récupérer la structure souhaitée. Enfin, nous considérons le problème de démixage d'un signal en deux composantes ou plus via la minimisation d’une somme de normes ou de jauges, encodant chacune la structure a priori des composants à récupérer. En particulier, nous fournissons une garantie de récupération exacte dans le cadre sans bruit, basée sur des mesures d'incohérence / The goal of machine learning is to learn a model from some data that will make accurate predictions on data that it has not seen before. In order to obtain a model that will generalize on new data, and avoid overfitting, we need to restrain the model. These restrictions are usually some a priori knowledge of the structure of the model. First considered approaches included a regularization, first ridge regression and later Lasso regularization for inducing sparsity in the solution. Sparsity, also known as parsimony, has emerged as a fundamental concept in machine learning. Parsimonious models are appealing since they provide more interpretability and better generalization (avoid overfitting) through the reduced number of parameters. Beyond general sparsity and in many cases, models are constrained structurally so they have a simple representation in terms of some fundamental elements, consisting for example of a collection of specific vectors, matrices or tensors. These fundamental elements are called atoms. In this context, atomic norms provide a general framework for estimating these sorts of models. The goal of this thesis is to use the framework of convex sparsity provided by atomic norms to study a form of matrix sparsity. First, we develop an efficient algorithm based on Frank-Wolfe methods that is particularly adapted to solve problems with an atomic norm regularization. Then, we focus on the structure estimation of Gaussian graphical models, where the structure of the graph is encoded in the precision matrix and study the case with unobserved variables. We propose a convex formulation with an algorithmic approach and provide a theoretical result that states necessary conditions for recovering the desired structure. Finally, we consider the problem of signal demixing into two or more components via the minimization of a sum of norms or gauges, encoding each a structural prior on the corresponding components to recover. In particular, we provide general exact recovery guarantees in the noiseless setting based on incoherence measures
22

Optimisation énergétique Convexe pour véhicule Hybride électrique : vers une solution analytique / Convex Energy Management for Hybrid Electric vehicle : towards an Analytical Solution

Hadj-Saïd, Souad 07 November 2018 (has links)
Cette thèse s'inscrit dans le cadre de la gestion d'énergie d'un Véhicule Hybride Électrique. Pour ce type de véhicule, l'optimisation énergétique est un enjeu majeur. Cela consiste à calculer les commandes optimales minimisant la consommation énergétique du véhicule sous un nombre fini de contraintes. Deux types de méthodes peuvent être utilisées pour résoudre ce problème d'optimisation. La première méthode et la plus utilisée, la méthode numérique, utilisant des modèles cartographiques basés sur des données. Elle présente deux inconvénients majeurs: temps de calcul et mémoire importants. La deuxième méthode, appelée analytique, qui permet de remédier à ces deux problèmes, a été utilisée dans cette thèse. Plus l'architecture du véhicule devient complexe (plusieurs machines électriques, moteur thermique, élévateur de tension), plus l'intérêt de cette approche sera important. La méthodologie analytique, proposée dans cette thèse, est composée principalement de trois étapes : la modélisation convexe, le calcul analytique des commandes et la validation des commandes analytiques sur un simulateur de véhicule. Cette méthodologie a été appliquée sur les trois configurations possibles du véhicule étudié : parallèle, bi-parallèle et série. Finalement, l'ajout de l'élévateur de tension dans la gestion d'énergie ainsi que l'étude de son impact sur la consommation énergétique du véhicule sont présentés dans le dernier chapitre. Les résultats obtenus en simulation montrent que la méthode analytique a permis de réduire considérablement le temps de calcul tout en ayant une sous-optimalité très faible. / This thesis focuses on the energy management of Hybrid Electric Vehicle. In this type of vehicle, energy optimization is a major challenge. It consists of calculating optimal commands that minimize the vehicle’s energy consumption under a finite number of constraints. The optimization issue could be solved using a digital method or an analytical method. This choice depends on the nature of energy models that monitor the optimization criteria: analytical or maps of experimental measurements. However, this method presents numerous disadvantages. Its calculation is extremely time-consuming for instance. Therefore, the works presented in this thesis were directed in order to develop an analytical solution where the calculation is lesstime consuming. The architecture of the vehicle is complex. In fact, the vehicle contains two electrical machines, a thermal engine and a step-up. These components have all a straight impact on the vehicle’s energy consumption so several optimization variables were defining. Consequently, working on an analytical solution was a natural choice. The proposed analytical methodology consists of three steps: convex modeling, the command analytical calculation as well as the analytical command validation on a vehicle simulator. This methodology was applied to three possible configurations of the studied vehicle: parallel, biparallel and in serial. Finally, the step-up addition to the energy management as well as the study of itsimpact on the vehicle’s energy consumption are presented in the last chapter. The simulation results show that the analytical method reduces considerably the computing time and has an extremely low suboptimality.
23

Inertial Gradient-Descent algorithms for convex minimization / Algorithmes de descente de gradient inertiels pour la minimisation convexe.

Apidopoulos, Vasileios 11 October 2019 (has links)
Cette thèse porte sur l’étude des méthodes inertielles pour résoudre les problèmes de minimisation convexe structurés. Depuis les premiers travaux de Polyak et Nesterov, ces méthodes sont devenues très populaires, grâce à leurs effets d’accélération. Dans ce travail, on étudie une famille d’algorithmes de gradient proximal inertiel de type Nesterov avec un choix spécifique de suites de sur-relaxation. Les différentes propriétés de convergence de cette famille d’algorithmes sont présentées d’une manière unifiée, en fonction du paramètre de sur-relaxation. En outre, on étudie ces propriétés, dans le cas des fonctions lisses vérifiant des hypothèses géométriques supplémentaires, comme la condition de croissance (ou condition de Łojasiewicz). On montre qu’en combinant cette condition de croissance avec une condition de planéité (flatness) sur la géométrie de la fonction minimisante, on obtient de nouveaux taux de convergence. La stratégie adoptée ici, utilise des analogies du continu vers le discret, en passant des systèmes dynamiques continus en temps à des schémas discrets. En particulier, la famille d’algorithmes inertiels qui nous intéresse, peut être identifiée comme un schéma aux différences finies d’une équation/inclusion différentielle. Cette approche donne les grandes lignes d’une façon de transposer les différents résultats et leurs démonstrations du continu au discret. Cela ouvre la voie à de nouveaux schémas inertiels possibles, issus du même système dynamique. / This Thesis focuses on the study of inertial methods for solving composite convex minimization problems. Since the early works of Polyak and Nesterov, inertial methods become very popular, thanks to their acceleration effects. Here, we study a family of Nesterov-type inertial proximalgradient algorithms with a particular over-relaxation sequence. We give a unified presentation about the different convergence properties of this family of algorithms, depending on the over-relaxation parameter. In addition we addressing this issue, in the case of a smooth function with additional geometrical structure, such as the growth (or Łojasiewicz) condition. We show that by combining growth condition and a flatness-type condition on the geometry of the minimizing function, we are able to obtain some new convergence rates. Our analysis follows a continuous-to-discrete trail, passing from continuous-on time-dynamical systems to discrete schemes. In particular the family of inertial algorithms that interest us, can be identified as a finite difference scheme of a differential equation/inclusion. This approach provides a useful guideline, which permits to transpose the different results and their proofs from the continuous system to the discrete one. This opens the way for new possible inertial schemes, derived by the same dynamical system.
24

Modélisation du langage à l'aide de pénalités structurées / Modeling language with structured penalties

Nelakanti, Anil Kumar 11 February 2014 (has links)
La modélisation de la langue naturelle est l¿un des défis fondamentaux de l¿intelligence artificielle et de la conception de systèmes interactifs, avec applications dans les systèmes de dialogue, la génération de texte et la traduction automatique. Nous proposons un modèle log-linéaire discriminatif donnant la distribution des mots qui suivent un contexte donné. En raison de la parcimonie des données, nous proposons un terme de pénalité qui code correctement la structure de l¿espace fonctionnel pour éviter le sur-apprentissage et d¿améliorer la généralisation, tout en capturant de manière appropriée les dépendances à long terme. Le résultat est un modèle efficace qui capte suffisamment les dépendances longues sans occasionner une forte augmentation des ressources en espace ou en temps. Dans un modèle log-linéaire, les phases d¿apprentissage et de tests deviennent de plus en plus chères avec un nombre croissant de classes. Le nombre de classes dans un modèle de langue est la taille du vocabulaire, qui est généralement très importante. Une astuce courante consiste à appliquer le modèle en deux étapes: la première étape identifie le cluster le plus probable et la seconde prend le mot le plus probable du cluster choisi. Cette idée peut être généralisée à une hiérarchie de plus grande profondeur avec plusieurs niveaux de regroupement. Cependant, la performance du système de classification hiérarchique qui en résulte dépend du domaine d¿application et de la construction d¿une bonne hiérarchie. Nous étudions différentes stratégies pour construire la hiérarchie des catégories de leurs observations. / Modeling natural language is among fundamental challenges of artificial intelligence and the design of interactive machines, with applications spanning across various domains, such as dialogue systems, text generation and machine translation. We propose a discriminatively trained log-linear model to learn the distribution of words following a given context. Due to data sparsity, it is necessary to appropriately regularize the model using a penalty term. We design a penalty term that properly encodes the structure of the feature space to avoid overfitting and improve generalization while appropriately capturing long range dependencies. Some nice properties of specific structured penalties can be used to reduce the number of parameters required to encode the model. The outcome is an efficient model that suitably captures long dependencies in language without a significant increase in time or space requirements. In a log-linear model, both training and testing become increasingly expensive with growing number of classes. The number of classes in a language model is the size of the vocabulary which is typically very large. A common trick is to cluster classes and apply the model in two-steps; the first step picks the most probable cluster and the second picks the most probable word from the chosen cluster. This idea can be generalized to a hierarchy of larger depth with multiple levels of clustering. However, the performance of the resulting hierarchical classifier depends on the suitability of the clustering to the problem. We study different strategies to build the hierarchy of categories from their observations.
25

Commande linéaire à paramètres variants des robots manipulateurs flexibles

Halalchi, Houssem 13 September 2012 (has links) (PDF)
Les robots flexibles sont de plus en plus utilisés dans les applications pratiques. Ces robots sont caractérisés par une conception mécanique légère, réduisant ainsi leur encombrement, leur consommation d'énergie et améliorant leur sécurité. Cependant, la présence de vibrations transitoires rend difficile un contrôle précis de la trajectoire de ces systèmes. Cette thèse est précisément consacrée à l'asservissement en position des manipulateurs flexibles dans les espaces articulaire et opérationnel. Des méthodes de commande avancées, basées sur des outils de la commande robuste et de l'optimisation convexe, ont été proposées. Ces méthodes font en particulier appel à la théorie des systèmes linéaires à paramètres variants (LPV) et aux inégalités matricielles linéaires (LMI). En comparaison avec des lois de commande non-linéaires disponibles dans la littérature, les lois de commande LPV proposées permettent de considérerdes contraintes de performance et de robustesse de manière simple et systématique. L'accent est porté dans notre travail sur la gestion appropriée de la dépendance paramétrique du modèle LPV, en particulier les dépendances polynomiale et rationnelle. Des simulations numériques effectuées dans des conditions réalistes, ont permis d'observer une meilleure robustesse de la commande LPV par rapport à la commande non-linéaire par inversion de modèle face aux bruits de mesure, aux excitations de haute fréquence et aux incertitudes de modèle.
26

Emergence de structures modulaires dans les régulations des systèmes biologiques : théorie et applications à Bacillus subtilis

Goelzer, Anne 04 November 2010 (has links) (PDF)
Cette thèse consiste à étudier l'organisation du système de contrôle des voies métaboliques des bactéries afin de dégager des propriétés systémiques révélant son fonctionnement. Dans un premier temps, nous montrons que le contrôle des voies métaboliques est hautement structuré et peut se décomposer en modules fortement découplés en régime stationnaire. Ces modules possèdent des propriétés mathématiques remarquables ayant des conséquences importantes en biologie. Cette décomposition, basée intrinsèquement sur la vision système de l'Automatique, offre un cadre théorique formel général d'analyse du contrôle des voies métaboliques qui s'est révélé effectif pour analyser des données expérimentales. dans un deuxième temps, nous nous intéressons aux raisons possibles de l'émergence de cette structure de contrôle similaire. Nous identifions un ensemble de contraintes structurelles agissant au niveau de la répartition d'une ressource commune, les protéines, entre les processus cellulaires. Respecter ces contraintes pour un taux de croissance donné conduit à formaliser et résoudre un problème d'optimisation convexe non différentiable, que nous appelons Resource balance Analysis. Ce problème d'optimisation se résout numériquement à l'échelle de la bactérie grâce à un problème de Programmation Linéaire équivalent. plusieurs propriétés sont déduites de l'analyse théorique du critère obtenu. Tout d'abord, le taux de croissance est structurellement limité par la répartition d'une quantité finie de protéines entre les voies métaboliques et les ribosomes. Ensuite, l'émergence des modules dans les voies métaboliques provient d'une politique générale d'économie en protéines chez la bactérie pour gagner du taux de croissance. Certaines stratégies de transport bien connues comme la répression catabolique ou la substitution de transporteurs haute/basse affinités sont prédites par notre méthode et peuvent alors être interprétées comme le moyen de maximiser la croissance tout en minimisant l'investissement en protéines.
27

Fonctions de coût pour l'estimation des filtres acoustiques dans les mélanges réverbérants

Benichoux, Alexis 14 October 2013 (has links) (PDF)
On se place dans le cadre du traitement des signaux audio multicanaux et multi-sources. À partir du mélange de plusieurs sources sonores enregistrées en milieu réverbérant, on cherche à estimer les réponses acoustiques (ou filtres de mélange) entre les sources et les microphones. Ce problème inverse ne peut être résolu qu'en prenant en compte des hypothèses sur la nature des filtres. Notre approche consiste d'une part à identifier mathématiquement les hypothèses nécessaires sur les filtres pour pouvoir les estimer et d'autre part à construire des fonctions de coût et des algorithmes permettant de les estimer effectivement. Premièrement, nous avons considéré le cas où les signaux sources sont connus. Nous avons développé une méthode d'estimation des filtres basée sur une régularisation convexe prenant en compte à la fois la nature parcimonieuse des filtres et leur enveloppe de forme exponentielle décroissante. Nous avons effectué des enregistrements en environnement réel qui ont confirmé l'efficacité de cet algorithme. Deuxièmement, nous avons considéré le cas où les signaux sources sont inconnus, mais statistiquement indépendants. Les filtres de mélange peuvent alors être estimés à une indétermination de permutation et de gain près à chaque fréquence par des techniques d'analyse en composantes indépendantes. Nous avons apporté une étude exhaustive des garanties théoriques par lesquelles l'indétermination de permutation peut être levée dans le cas où les filtres sont parcimonieux dans le domaine temporel. Troisièmement, nous avons commencé à analyser les hypothèses sous lesquelles notre algorithme d'estimation des filtres pourrait être étendu à l'estimation conjointe des signaux sources et des filtres et montré un premier résultat négatif inattendu : dans le cadre de la déconvolution parcimonieuse aveugle, pour une famille assez large de fonctions de coût régularisées, le minimum global est trivial. Des contraintes supplémentaires sur les signaux sources ou les filtres sont donc nécessaires.
28

Traitement des signaux parcimonieux et applications

AZIZ SBAI, Si Mohamed 20 November 2012 (has links) (PDF)
Quel que soit le domaine d'application, il est nécessaire de tirer profit de toute l'information a priori dans le but d'optimiser les résultats ou parfois même de manière à rendre un problème soluble. Dans ce contexte, la notion de parcimonie a émergé comme un a priori fondamental ces dernières années. On dit qu'un signal est parcimonieux dans une base s'il peut être décrit par un faible nombre de coefficients non nuls dans cette base. L'objet de cette thèse est l'étude de nouveaux apports de l'hypothèse de parcimonie au traitement du signal. Deux domaines d'applications sont considérés. Outre l'utilisation de la parcimonie, ces deux domaines ont en commun la résolution de problèmes inverses sous-déterminés. Le premier concerne la séparation de sources. Dans ce domaine, la parcimonie a conduit au développement de différentes méthodes de séparation de sources. Les performances de ces méthodes sont sensibles au choix de certains paramètres, habituellement choisis de manière empirique. Dans cette thèse, on propose un formalisme statistique qui permet de réduire le nombre de ces paramètres, tout en préservant la qualité de la séparation. Le second domaine d'application étudié est l'acquisition compressée des signaux à alphabet fini. Une telle acquisition compressée permet de réduire la dimension des signaux à alphabet fini, tout en gardant l'information nécessaire à leur reconstruction. Une formalisation du problème permet de le relier à celui de la reconstruction des signaux parcimonieux à partir de mesures incomplètes. Cette thèse est donc une exploration de nouvelles problématiques où l'intégration de la parcimonie conduit à de bonnes performances.
29

Méthodes proximales pour la résolution de problèmes inverses : application à la tomographie par émission de positrons

Pustelnik, Nelly 13 December 2010 (has links) (PDF)
L'objectif de cette thèse est de proposer des méthodes fiables, efficaces et rapides pour minimiser des critères convexes apparaissant dans la résolution de problèmes inverses en imagerie. Ainsi, nous nous intéresserons à des problèmes de restauration/reconstruction lorsque les données sont dégradées par un opérateur linéaire et un bruit qui peut être non additif. La fiabilité de la méthode sera assurée par l'utilisation d'algorithmes proximaux dont la convergence est garantie lorsqu'il s'agit de minimiser des critères convexes. La quête d'efficacité impliquera le choix d'un critère adapté aux caractéristiques du bruit, à l'opérateur linéaire et au type d'image à reconstruire. En particulier, nous utiliserons des termes de régularisation basés sur la variation totale et/ou favorisant la parcimonie des coefficients du signal recherché dans une trame. L'utilisation de trames nous amènera à considérer deux approches : une formulation du critère à l'analyse et une formulation du critère à la synthèse. De plus, nous étendrons les algorithmes proximaux et leurs preuves de convergence aux cas de problèmes inverses multicomposantes. La recherche de la rapidité de traitement se traduira par l'utilisation d'algorithmes proximaux parallélisables. Les résultats théoriques obtenus seront illustrés sur différents types de problèmes inverses de grandes tailles comme la restauration d'images mais aussi la stéréoscopie, l'imagerie multispectrale, la décomposition en composantes de texture et de géométrie. Une application attirera plus particulièrement notre attention ; il s'agit de la reconstruction de l'activité dynamique en Tomographie par Emission de Positrons (TEP) qui constitue un problème inverse difficile mettant en jeu un opérateur de projection et un bruit de Poisson dégradant fortement les données observées. Pour optimiser la qualité de reconstruction, nous exploiterons les caractéristiques spatio-temporelles de l'activité dans les tissus.
30

Analyse en ondelettes M-bandes en arbre dual; application à la restauration d'images

Chaux, Caroline 13 December 2006 (has links) (PDF)
Cette thèse porte sur les décompositions en ondelettes M-bandes en arbre dual ainsi que sur leur application à l'analyse et la restauration d'images. Ces décompositions permettent d'obtenir une analyse multi-échelles, directionnelle et locale des images. Elles s'inscrivent donc dans la perspective de travaux récents visant à mieux représenter les informations géométriques (textures, contours) et les préserver lors de traitements. Ce travail s'appuie sur les travaux antérieurs de N. Kingsbury et I. Selesnick portant sur la construction de décompositions en ondelettes formant des paires de Hilbert (approchées). Ces auteurs ont établi divers résultats concernant le cas dyadique et l'une de nos contributions a été de montrer qu'il était possible de généraliser leurs conclusions et de montrer de nouveaux résultats dans le cas M-bandes. Les représentations proposées présentent de nombreux avantages notamment en termes d'invariance par translation de l'analyse et de sélectivité directionnelle. Nous avons établi les conditions que doivent satisfaire les bancs de filtres en arbre dual servant à l'analyse et à la synthèse des signaux traités. Nous avons également étudié les pré-traitements qu'il est nécessaire d'appliquer à des données discrètes. Ces décompositions introduisant typiquement une redondance d'un facteur 2 (dans le cas réel, et de 4 dans le cas complexe), elles constituent des trames à partir desquelles on peut calculer une reconstruction optimale. Ces nouvelles transformées ont finalement été généralisées aux cadres biorthogonal et complexe. Notre volonté d'appliquer ces outils d'analyse au débruitage de signaux nous a conduit à l'étude des propriétés statistiques des coefficients issus de la décomposition M-bandes en arbre dual d'un processus aléatoire stationnaire au sens large. Nous avons tout d'abord calculé les statistiques au second ordre de ces coefficients et nous avons étudié le rôle du post-traitement dans le calcul des corrélations. Quelques résultats asymptotiques concernant les corrélations d'un couple de coefficients primal/dual ont également été obtenus. Les inter-corrélations entre les ondelettes primale et duale jouant un rôle clé dans notre étude, nous en avons fourni des expressions exactes pour quelques familles d'ondelettes usuelles. Des simulations numériques nous ont aussi permis de valider nos résultats théoriques ainsi que d'évaluer la zone d'influence de la dépendance statistique induite. Pour démontrer l'efficacité de ces décompositions, nous avons été amenés à nous intéresser à deux types de problèmes : le débruitage et la déconvolution d'images. En ce qui concerne le débruitage, nous avons poursuivi deux buts principaux liés au cheminement de la thèse. Dans un premier temps, nous nous sommes attachés à montrer que la décomposition en arbre dual M-bandes apporte un gain significatif en terme de qualité, à la fois objective et subjective, par rapport à une décomposition en ondelettes classique, voire une décomposition dyadique en arbre dual. Dans un second temps, nous avons considéré le débruitage d'images multi-canaux pour lesquelles nous avons mis en place un estimateur statistique original reposant sur l'emploi du principe de Stein et permettant notamment de prendre en compte des voisinages quelconques (spatial, intercomposantes, inter-échelles, ...). Les problèmes de déconvolution d'images ont été appréhendés dans le cadre de méthodes variationnelles, en mettant en place un algorithme itératif, utilisant des outils récemment développés en analyse convexe. L'approche proposée permet de résoudre des problèmes inverses associés à des modèles probabilistes variés et elle est applicable à l'analyse M-bandes en arbre dual ainsi qu'à tout autre type de représentation à l'aide d'une trame.

Page generated in 0.1745 seconds