• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Kenyas export till samtliga handelspartner - påverkande faktorer? : En empirisk analys på makronivå med tillämpning av gravitationsmodellen

Amir, Daban January 2014 (has links)
Tidigare studier visar att ökad handel spelar en tydlig roll för ett lands ekonomiska tillväxt. Genom att träda in på den globala marknaden öppnas många möjligheter för ökad handel och nya arbetstillfällen. Utrikeshandeln är betydelsefull för små öppna ekonomier som till exempel Kenya och bör utgöra en stor del av landets BNP. I och med detta är det viktigt att studera vilka faktorer som påverkar ett lands utrikeshandel. Syftet med uppsatsen är att undersöka vilka faktorer som påverkar Kenyas export. Analysen visar att handelspartnernas BNP har en betydande påverkan på Kenyas export. Det geografiska avståndet har en negativ påverkan på Kenyas utrikeshandel. De regionala handelsavtalen har som förväntat en positiv påverkan på exporten.
2

The value and validity of software effort estimation models built from a multiple organization data set

Deng, Kefu January 2008 (has links)
The objective of this research is to empirically assess the value and validity of a multi-organization data set in the building of prediction models for several ‘local’ software organizations; that is, smaller organizations that might have a few project records but that are interested in improving their ability to accurately predict software project effort. Evidence to date in the research literature is mixed, due not to problems with the underlying research ideas but with limitations in the analytical processes employed: • the majority of previous studies have used only a single organization as the ‘local’ sample, introducing the potential for bias • the degree to which the conclusions of these studies might apply more generally is unable to be determined because of a lack of transparency in the data analysis processes used. It is the aim of this research to provide a more robust and visible test of the utility of the largest multi-organization data set currently available – that from the ISBSG – in terms of enabling smaller-scale organizations to build relevant and accurate models for project-level effort prediction. Stepwise regression is employed to enable the construction of ‘local’, ‘global’ and ‘refined global’ models of effort that are then validated against actual project data from eight organizations. The results indicate that local data, that is, data collected for a single organization, is almost always more effective as a basis for the construction of a predictive model than data sourced from a global repository. That said, the accuracy of the models produced from the global data set, while worse than that achieved with local data, may be sufficiently accurate in the absence of reliable local data – an issue that could be investigated in future research. The study concludes with recommendations for both software engineering practice – in setting out a more dynamic scenario for the management of software development – and research – in terms of implications for the collection and analysis of software engineering data.
3

The value and validity of software effort estimation models built from a multiple organization data set

Deng, Kefu January 2008 (has links)
The objective of this research is to empirically assess the value and validity of a multi-organization data set in the building of prediction models for several ‘local’ software organizations; that is, smaller organizations that might have a few project records but that are interested in improving their ability to accurately predict software project effort. Evidence to date in the research literature is mixed, due not to problems with the underlying research ideas but with limitations in the analytical processes employed: • the majority of previous studies have used only a single organization as the ‘local’ sample, introducing the potential for bias • the degree to which the conclusions of these studies might apply more generally is unable to be determined because of a lack of transparency in the data analysis processes used. It is the aim of this research to provide a more robust and visible test of the utility of the largest multi-organization data set currently available – that from the ISBSG – in terms of enabling smaller-scale organizations to build relevant and accurate models for project-level effort prediction. Stepwise regression is employed to enable the construction of ‘local’, ‘global’ and ‘refined global’ models of effort that are then validated against actual project data from eight organizations. The results indicate that local data, that is, data collected for a single organization, is almost always more effective as a basis for the construction of a predictive model than data sourced from a global repository. That said, the accuracy of the models produced from the global data set, while worse than that achieved with local data, may be sufficiently accurate in the absence of reliable local data – an issue that could be investigated in future research. The study concludes with recommendations for both software engineering practice – in setting out a more dynamic scenario for the management of software development – and research – in terms of implications for the collection and analysis of software engineering data.
4

The Effect of Immigration on Income Distribution : A Comparative Study of Ordinary Least Squares and Beta Regression

Forslind, Fanni January 2021 (has links)
The purpose of this study is to estimate the relationship between income inequality and immigration in Sweden. To do so, data from the data base Kolada with observations from all 290 municipalities in Sweden is used. As a proxy for income distribution the Gini coefficient is used and as a proxy for immigration the share of foreign born of working age is used. The model also controls for income tax, education level and unemployment level. The dependent variable the Gini coefficient is bounded by a unit interval and it is therefore not possible to simply run a linear regression. Such a model could potentially predict outside the interval. To properly estimate the relationship two approaches are made. Firstly a model is estimated with Ordinary Least Squares (OLS) after the dependent variable is transformed on to the real line through log-odds. Then a model is estimated using beta regression. The study concludes that there is a statistically significant positive correlation between income inequality and immigration in Sweden. The OLS estimated model shows that a 1 unit increase in immigration, on average increases the log-odds of 0.28336 units, ceteris paribus. Beta regression provides perhaps more intuitive results. If immigration increases with 1% the income inequality increases with on average 0.1046%, ceteris paribus. Because of the easier interpretation, among other things, beta regression is determined to be a better estimation method in this study.
5

Comparison of Two Parameter Estimation Techniques for Stochastic Models

Robacker, Thomas C 01 August 2015 (has links)
Parameter estimation techniques have been successfully and extensively applied to deterministic models based on ordinary differential equations but are in early development for stochastic models. In this thesis, we first investigate using parameter estimation techniques for a deterministic model to approximate parameters in a corresponding stochastic model. The basis behind this approach lies in the Kurtz limit theorem which implies that for large populations, the realizations of the stochastic model converge to the deterministic model. We show for two example models that this approach often fails to estimate parameters well when the population size is small. We then develop a new method, the MCR method, which is unique to stochastic models and provides significantly better estimates and smaller confidence intervals for parameter values. Initial analysis of the new MCR method indicates that this method might be a viable method for parameter estimation for continuous time Markov chain models.
6

Comparison Of Regression Techniques Via Monte Carlo Simulation

Can Mutan, Oya 01 June 2004 (has links) (PDF)
The ordinary least squares (OLS) is one of the most widely used methods for modelling the functional relationship between variables. However, this estimation procedure counts on some assumptions and the violation of these assumptions may lead to nonrobust estimates. In this study, the simple linear regression model is investigated for conditions in which the distribution of the error terms is Generalised Logistic. Some robust and nonparametric methods such as modified maximum likelihood (MML), least absolute deviations (LAD), Winsorized least squares, least trimmed squares (LTS), Theil and weighted Theil are compared via computer simulation. In order to evaluate the estimator performance, mean, variance, bias, mean square error (MSE) and relative mean square error (RMSE) are computed.
7

An analysis of the USMC FITREP: contemporary or inflexible? / Analysis of the United States Marine Corps Fitness Reports

Jobst, Mark G., Palmer, Jeffrey 03 1900 (has links)
Approved for public release, distribution is unlimited / The purpose of this thesis is threefold. Firstly, to attempt to provide validity for the two-sided matching process; secondly, analyze FITREP attributes to determine their suitability for a weighted criteria evaluation system and; thirdly, compare the USMC promotion and assignment process with contemporary human resource management practices. Using data from the USMC Officer Accession Career file (MCCOAC), a logit model is used to estimate the effects of TBS preference and other officer characteristics on retention to the seven year mark. Findings indicate that there was little difference in the probability of retention throughout most preference levels except for the bottom sixth. Using USMC FITREP data, an ordinary least squares model is used to estimate the effects of rank and MOS on FITREP scores across all attributes. Multiple comparison tests demonstrated that there are statistical differences at the 0.05 level between the means of the MOSs. Additionally, reporting creep is continuing across all attributes. Surveys were also conducted. The first survey indicated that USMC officers believe the FITREP attributes were not all equally important within, and across each MOS - although the USMC assesses them as such. The second survey indicated that the USMC promotion and assignment process can be strengthened through a clearly defined HRM plan that extends beyond 'faces' and 'places', and provides very clear links to the organizational strategy. Based on the findings it is recommended that the USMC review its HRM processes and conduct further analyses on the FITREP data for: (1) correlation, (2) longitudinal analysis as a predictor for success and, (3) relevance and relationship to MOS characteristics, position descriptions, and organizational strategy. / Major, Royal Australian Infantry Corps / Major, United States Marine Corps

Page generated in 0.0592 seconds