• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 76
  • 76
  • 51
  • 27
  • 25
  • 19
  • 17
  • 12
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The porphyry copper system and the precious metal-gold potential

Gendall, Ian Richard January 1994 (has links)
It has been established that porphyry copper/copper-gold deposits have formed from I Ma to 2 Ga ago. Generally, they are related to the Mesozoic-Cenozoic interval with few reported occurrences from the Palaeozoic or Precambrian. A reason cited is the erosion of these deposits which are often related to convergent plate margins and orogenic belts. Observations of the alteration and mineralisation within and around porphyry copper/copper-gold systems have been included in numerous idealised models. These alteration and mineralisation patterns are dependent on the phases of intrusion, the tectonic setting and rock type, depth of emplacement and relationship to coeval volcanics, physiochemical conditions operative within and surrounding the intrusive and many other mechanical and geochemical conditions. Island arc and cratonic arc/margin deposits are generally considered to be richer in gold than their molybdenum-rich, intra-cratonic counterparts. Metal zonation may occur around these copper/copper-gold deposits, e.g. copper in the core moving out to silver, lead, zinc and gold. This zonation is not always present and gold may occur in the core, intermediate or distal zones. Examples of gold-rich porphyry deposits from British Columbia, Chile and the SW Pacific Island regions suggest gold is closely associated with the potassic-rich zones. Generally these gold-rich zones have greater than 2% magnetite and a high oxygen fugacity is considered to be an important control for gold deposition. High Cl contents within the magma are necessary for gold mobility within the host intrusive centres. Beyond this zone HS₂ becomes an important transporting ligand. Exploration for porphyry copper-gold deposits includes an integrated geological, geophysical and geochemical approach. Petrographic work through to Landsat imagery may be used to determine the chemical conditions of the system, ore association, favourable structural zones and alteration patterns, in order to focus exploration activities.
22

Physico-chemical conditions of mineralization in the Sabie-Pilgrim's Rest Goldfield, Eastern Transvaal

Boer, Rudolf Hans 16 August 2016 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, for the Degree of Doctor of Philosophy Johannesburg, 1995 / A different class of mesothermal gold deposit at Sabie-Pilgrim’s Rest is described which is probably associated with the Bushveld igneous event in South Africa. Pressure and temperature estimates indicate that the ore-fluids of the Sabie-Pilgrim's Rest Goldfield, which occurs within the early Proterozoic Transvaal Supergroup, were similar to those of mesothermal gold deposits. [Abbreviated abstract. Open document ot view full version]
23

The significance of unconformities in the development of Witwatersrand gold and uranium placers

Beater, Christian Douglas 03 April 2013 (has links)
Most of the economic gold and uranium placers are developed on low angle disconformities in the Central Rand Group and concentrations of gold and uranium are usually at their optimum on unconformity surfaces. Examples include the Kimberley Reef and South Reef of the East Rand, the Main Reef Leader of the Central Rand, the Carbon Leader of the Carletonville goldfield, the Vaal Reef of the Klerksdorp goldfield and the Basal/Steyn placers of the Welkom goldfield. The individual goldfields represent fluvial fans which are composed of a large number of tectonogenetic sedimentary packages separated by unconformities. The tectonic responses between cycles of sedimentation produced unconformities and tectonically controlled cyclic sedimentation is one of the key factors culminating in the preparation and deposition of auriferous placers within the Witwatersrand succession. Unconformities, which represent breaks in sedimentation, result in the preconditioning of palaeosurfaces and redistribution of sediments and heavy minerals on them. Winnowing of sands produced heavy mineral residual accumulations on erosion surfaces which were generally preserved by small-pebble lags or algal mats. Reworking of units truncated by the unconformities provided additional gold, uranium and heavy minerals to unconformity surfaces.
24

Petrographic and geochemical constraints on the origin and post-depositional history of the Hotazel iron-manganese deposits, Kalahari Manganese Field, South Africa

Tsikos, Harilaos January 2000 (has links)
The giant Palaeoproterozoic manganese deposits of the Kalahari manganese field (KMF), Northern Cape Province, South Mrica, have been a world renowned resource of manganese ore for many decades. In recent years, the mineralogical composition, geochemistry and genesis of these deposits have been the objects of many geological investigations, yet their origin remains contentious up to the present day. A characteristic feature of the Kalahari deposits is the intimate association of manganese ore and iron-formation of the Superior-type, in the form of three discrete sedimentary cycles constituting the Hotazel Formation. This striking lithological association is an almost unique feature on a global scale. From that point of view, the present study is effectively the first attempt to shed light on the origin and post-depositional history of the Hotazel succession, using as prime focus the petrographic and geochemical characteristics ofthe host iron-formation. Petrographic and whole-rock geochemical information of iron-formation from the southern parts of the KMF, suggests that the Hotazel iron-formation is almost identical to other iron-formations of the world of similar age and petrological character. The rock exhibits essentially no high-grade metamorphic or low-temperature alteration effects. Mineralogically, it contains abundant chert, magnetite, subordinate amounts of silicate minerals (greenalite, minnesotaite, stilpnomelane) and appreciable concentrations of carbonate constituents in the form of coexisting calcite and ankerite. Such mineralogical composition is indicative of processes occurring in a diagenetic" to burial (up to very low-greenschist facies) metamorphic environment. Bulk-rock geochemical data point towards a simple composition with Si02, total Fe-oxide and CaO being the chief major oxide components. Whole-rock rare-earth element data suggest that the iron-formation precipitated from a water column with chemical signatures comparable to modern, shallow oceanic seawater. The virtual absence of positive Eu anomalies is a feature that compares well with similar data from Neoproterozoic, glaciogenic iron-formations of the Rapitan type, and suggests but only a dilute hydrothermal signal, poten!ially derived from distal submarine volcanic activity. Carbon and oxygen isotope data from iron-formation and Mn-bearing carbonates as well as overlying ferriferous limestone of the Mooidraai Formation, compare well with the literature. The former exhibit variable depletion relative to seawater in terms of both BC and 180, while the latter have signatures comparable to normal marine bicarbonate. Isotopic variations appear to be related to fluctuations in the amount of co-precipitated marine carbonate, in conjunction with processes of coupled organic matter oxidation - FelMn reduction in the diagenetic environment. Oxygen isotope data from quartz-magnetite-calcite triplets suggest that crystallisation took place under open-system conditions, with magnetite being the most susceptible phase in terms of fluid-rock isotopic exchange. Data also suggest that the calcite-magnetite pair may constitute a more reliable geothermometer than the quartz-magnetite one, mainly due to the interlinked diagenetic histories between calcite and magnetite. Iron-formation from the northern parts of the KMF can by categorised into three main classes, namely pristine, altered and oxidised. Pristine iron-formation is identical to the one seen in the southernmost parts of the field. Altered iron-formation corresponds to a carbonate-free derivative of intense oxidation and leaching processes at the expense ofpristine iron-formation, and contains almost exclusively binary quartz-hematite mixtures. The rock appears to have lost essentially its entire pre-existing carbonate-related components (i.e., Ca, Mg, Sr, most Mn and Ba) and displays residual enrichments in elements such as Cr, Th, V, Ni and Pb, which would have behaved as immobile constituents during low-temperature alteration. The low temperature origin of altered iron-formation is supported by oxygen isotope data from quartz-hematite pairs which indicate that isotopically light hematite would have derived from oxidation of magneftte and other ferroussilicate compounds in the presence of a low-temperature meteoric fluid, while quartz would have remained isotopically unchanged. Occasional occurrences of acmite-hematite assemblages suggest localised metasomatic processes related to the action ofNaCI-rich fluids at the expense of altered iron-formation. The conditions of acmite genesis are very poorly constrained due to the very broad stability limits of the mineral in environments ranging from magmatic to surface-related. Oxidised iron-formation constitutes a distinct rock-type and shares common attributes with both the pristine and the altered iron-formation. The rock contains hematite as an important constituent while the amount of magnetite is substantially reduced. With regard to carbonate nlinerals, calcite contents are clearly very low or absent, having being replaced in most instances by a single, Mgenriched, dolomite/ankerite:type species. Oxidised iron-formation contains somewhat higher amounts of iron and reduced amounts of Sr and Ba relative to pristine iron-formation, whereas enrichments in elements such as Ni, Th, Pb, Cr, and V are seen, similar to altered iron-formation. Oxidised iron-formation appears to have originated from processes of dissolution-mobilisationreprecipitation of solutes derived primarily from leaching that produced altered iron-formation. It is proposed that the Hotazel iron-formation and associated manganese deposits were formed as a result of episodic sea-level fluctuations in a stratified depositional environment that gradually evolved into a shallow carbonate platform. A critical parameter in the development of manganese sediment may include regional climatic patterns related to a glacial event (Makganyene diamictite) prior to deposition of the Hotazel strata. This suggestion draws parallels with processes that are believed to have led to the formation of worldwide iron-formations and associated manganese deposits subsequent to Neoproterozoic episodes of glaciation. Submarine volcanism related to the underlying Ongeluk lavas appears to have had very little (if any) metallogenic significance, while evidence for a sudden rise in the oxygen contents of the atmosphere and ambient waters is lacking. With regard to later alteration processes, combination of geological and geochemical data point towards the potential influence of surface weathering prior to deposition of rocks of the unconformably overlying Olifantshoek Supergroup, possibly coupled with fault- and/or thrustcontrolled fluid-flow and leaching of the Hotazel succession during post-Olifantshoek times.
25

Gold exploration in tropical and sub-tropical terrains with special emphasis on Central and Western Africa

Breedt, Machiel Christoffel January 1996 (has links)
The aim of this dissertation is an attempt to' provide a general guide for future gold exploration in tropical and sub-tropical terrains. The dissertation includes a brief discussion of the various exploration techniques used in regional and local exploration. This provide the necessary background knowledge to discriminate between the constraints and applications and to be able to select the techniques which are more suitable for gold exploration in tropical and sub-tropical terrains. Weathering, gold geochemistry and soil formation, fields often neglected, are emphasized to illustrate the importance of the mobility and dispersion of gold in the weathering of the lateritic soil profile. A sound knowledge and experience in regolith mapping is to the advantage of the explorationist. Case studies with special emphasis on Central- and Western Africa are included to illustrate the effectiveness of some of the gold exploration techniques in tropical and sub-tropical terrains. Gold exploration is a highly complex and demanding science and to be successfull involves the full intergration of all geological, geochemical and geophysical information available. An intergrated exploration method and strategy would enhance the possibility of making viable discoveries in this highly competative environment where our mineral resources become more depleted every day. Where applicable, the reader is refered to various recommended literature sources to provide the necessary background knowledge which form an integral part of gold exploration.
26

The geology of the Cam and Motor Mine

Hartman, Louis W. 04 May 2015 (has links)
No description available.
27

The application of artificial thermoluminescence to uranium exploration and uranium ore genesis studies

Hochman, Mark Brett McEwen. January 1989 (has links) (PDF)
Typescript (Photocopy) Includes copies of 5 published papers co-authored by the author in back Bibliography: leaves 214-230
28

Geochemistry of the Cambrian manganese deposits of eastern Newfoundland /

Douglas, John Leslie, January 1983 (has links)
Thesis (Ph.D.) -- Memorial University of Newfoundland. / Bibliography : leaves 168-183. Also available online.
29

A geological model of shear zone gold deposits in the Pietersburg Greenstone Belt, South Africa

Franey, N J 17 April 2013 (has links)
The Pletersburg greenstone belt Is located In South Africa, about 300 km northeast of Johannesburg. It hosts a significant amount of gold mineralization and just over 1000 kg of gold have been produced from Its various reefs and secondary deposits. The greenstone belt is interpreted as an Archean ophiolite complex. It comprlses a volcano-sedimentary succession (the Pletersburg Group) which Is subdivided Into a basal greenstone sequence, interpreted as oceanic crust, and an upper sedimentary cover sequence. A number of major shear zones, which are thought to represent thrusts that developed during the subduction of the greenstone sequence, form an integral part of the stratigraphy . Four stages of deformation (D₁-D₄) and four phases of metamorphism (H₁-H₄) (three of which are correlatable with the peak stages of deformation) are recognized. The primary gold deposits are all shear zones related. but they are subdivided into greenstone, sedimentation and granIte-hosted types. Geographically, they occur In three distinct goldfields: Eerstellng, Roodepoort and Marbastad. The greenstone-hosted · Plenaar-Doreen shear complex Is In the Eersteiing goldfield and hosts eight gold occurrences. Within the complex, Girlie North Reef is the 640m-long "pay" section of the Girlie North shear zone. This reef is characterized, macroscopically, by a Quartz-carbonate-chlorite-sulphlde assemblage and, mlcroscoplcally, by the presence of tourmaline, arsenopyrlte and Au. Geochemical evidence Indicates that mineralizing fluids were H₂O and CO₂-bearing and rich In S, K and Al. The wall rock alteratlon was Isochemlcal but Is manifest as a change In mineralogy from a hornblende + plagioclase assemblage to an actlnollte/tremollte + Quartz + clay assemblage. This Is best developed In the hangIng wall of the reef and is thought to have been caused by hydrogen ion metasomatism. The Arsenopyrite Reef was one of the main sediment-hosted shear zone gold producers In the Harabastad goldfield. This reef Is Interpreted as the basal margin of a shear zone whose top contact Is probably represented by the Quartz Vein Reef. The shear zone consists predomonantly of quartz and carbonate, and the two "pay" reefs are characterized by tourmallne. arsenopyrite and Au. No wall rock alteration was identified In this study, Based on the mineralogy and geochemical signature of the Girlie Nortn Reef and the Arsenopyrite Reef, It Is proposed that both were formed at the $The Pletersburg greenstone belt Is located In South Africa, about 300 km northeast of Johannesburg. It hosts a significant amount of gold mineralization and just over 1000 kg of gold have been produced from Its various reefs and secondary deposits. The greenstone belt is interpreted as an Archean ophiolite complex. It comprlses a volcano-sedimentary succession (the Pletersburg Group) which Is subdivided Into a basal greenstone sequence, interpreted as oceanic crust, and an upper sedimentary cover sequence. A number of major shear zones, which are thought to represent thrusts that developed during the subduction of the greenstone sequence, form an integral part of the stratigraphy . Four stages of deformation (D₁-D₄) and four phases of metamorphism (H₁-H₄) (three of which are correlatable with the peak stages of deformation) are recognized. The primary gold deposits are all shear zones related. but they are subdivided into greenstone, sedimentation and granIte-hosted types. Geographically, they occur In three distinct goldfields: Eerstellng, Roodepoort and Marbastad. The greenstone-hosted · Plenaar-Doreen shear complex Is In the Eersteiing goldfield and hosts eight gold occurrences. Within the complex, Girlie North Reef is the 640m-long "pay" section of the Girlie North shear zone. This reef is characterized, macroscopically, by a Quartz-carbonate-chlorite-sulphlde assemblage and, mlcroscoplcally, by the presence of tourmaline, arsenopyrlte and Au. Geochemical evidence Indicates that mineralizing fluids were H₂O and CO₂-bearing and rich In S, K and Al. The wall rock alteratlon was Isochemlcal but Is manifest as a change In mineralogy from a hornblende + plagioclase assemblage to an actlnollte/tremollte + Quartz + clay assemblage. This Is best developed In the hangIng wall of the reef and is thought to have been caused by hydrogen ion metasomatism. The Arsenopyrite Reef was one of the main sediment-hosted shear zone gold producers In the Harabastad goldfield. This reef Is Interpreted as the basal margin of a shear zone whose top contact Is probably represented by the Quartz Vein Reef. The shear zone consists predomonantly of quartz and carbonate, and the two "pay" reefs are characterized by tourmallne. arsenopyrite and Au. No wall rock alteration was identified In this study, Based on the mineralogy and geochemical signature of the Girlie Nortn Reef and the Arsenopyrite Reef, It Is proposed that both were formed at the same time. Textural evidence Indicates that tourmaline, arsenopyrite and Au were all very late In the paragenesis of minerallzatlon. The presence of tourmaline also Indicates a probable granite association. It Is proposed that the maln gold mineralizing event was synchronous with the Intrusion of granitoids (and therefore also with (D₁-D₄) and (H₁-H₄) and that most of the Au was derived from felsic magma. Gold was partitioned Into a magmatic hydrothermal fluid and then transported into the greenstone belt as a chlorIde complex. These magmatiC fluids were channelled up shear zones whIch had already been mineralized with a quartz-carbonate-chlorlte - sulphide assemblage by previous metamorphic fluidS. generated during the dynamic (D₂-related) H₂-phase of metamorphism. The Au was then deposIted as the result of a change In a fluid variable, such as temperature, pH, f0₂, or the activity of Cl (some Au may have been transported In a sulphur complex and so the activity of reduced 5 could also have been Important).
30

The nature and origin of gold mineralization in the Tugela valley, Natal Structural and Metamorphic Province

De Klerk, Ian Duncan January 1991 (has links)
The project area is situated within the Tugela Valley, located in the Northern Marginal Zone of the Natal Structural and Metamorphic Province, and this work outlines the different styles of gold mineralization found in the Tugela Valley. Two different styles have been recognized and both have economic significance:- 1) Epigenetic shear zone-hosted gold occurs in late-stage relatively undeformed thin quartz veins confined to shear zones, and is present in both the greenschist facies Natal Thrust Belt and the amphibolite facies Natal Nappe Complex. However the vast majority of these occurrences are concentrated within the thrust front (i.e. the Natal Thrust Belt). The gold grades (up to 7 g/t) and the hydrothermal alteration assemblages associated with the epigenetic deposits have been documented. 2) An as yet unrecognized occurrence of syngenetic gold mineralization is found associated with the sediment-hosted exhalative massive, to semi-massive, sulphides of the iThuma prospect, located within the amphibolite facies Natal Nappe Complex. Here gold (up to 3 g/t) is concentrated together with the main sulphide are, as well as some gold enrichment (230ppb) in the hydrothermally altered footwall feeder pipe. It is proposed that the epigenetic mineralization was formed as a consequence of the northward directed abduction of the major thrust slices of the Natal Nappe Complex. This increased the permeability of the rocks and provided channelways for the focussing of fluids. Deposition took place at the thrust front where metamorphic hydrothermal fluids interacted with meteoric water.

Page generated in 0.0453 seconds