Spelling suggestions: "subject:"organes -- c.ulture."" "subject:"organes -- 1culture.""
1 |
Impact d'un substrat à rigidité ou à composition biomimétique sur la formation des jonctions intercellulaires de cellules endothéliales cornéennes en cultureSasseville, Samantha 21 October 2024 (has links)
L'endothélium cornéen est une monocouche de cellules endothéliales cornéennes (CECs) situé sur la face postérieure de la cornée. Il crée une barrière perméable, en partie grâce aux jonctions intercellulaires. Une atteinte à cette monocouche mène à un œdème cornéen et à une perte de vision. Le seul traitement est la greffe de cornée provenant de donneur. Une alternative serait de multiplier les CECs en culture et recréer un endothélium cornéen sur un biomatériau biocompatible. Cela permettrait de traiter plusieurs patients à partir des cellules d'une seule cornée. Par contre, la formation des jonctions intercellulaires de CECs en culture doit être améliorée afin d'assurer la fonctionnalité de l'endothélium reconstruit. *In vivo*, les CECs reposent sur la membrane de Descemet ayant une rigidité entre 20 et 80 kPa. L'objectif 1 a pour but de déterminer comment la culture de CECs sur un substrat de rigidité physiologique influence la formation de jonctions intercellulaires. Pour ce faire, deux types d'hydrogels à rigidité physiologique ont été utilisés. Nos résultats ont démontré que les hydrogels de polyacrylamide sont un meilleur candidat que les hydrogels « CytoSoft » pour la culture à long terme de CECs. Par la suite, la culture a été optimisée pour la formation de jonctions intercellulaires et les résultats ont favorisé un recouvrement de collagène IV, un milieu de maturation avec 5% de sérum de veau fœtal et TGF-β2 et une rigidité de 50 kPa. Ces conditions optimales ont été utilisées pour comparer la culture sur hydrogel à la culture sur verre (70 GPa). Nos résultats ont démontré que la rigidité physiologique ne peut pas rétablir un phénotype endothélial et que la culture de CECs conditionnées à la rigidité physiologique sur hydrogel permet une meilleure formation des jonctions intercellulaires que lors de la culture sur verre. Pour terminer, l'expansion de CECs fraichement isolées sur hydrogel a été évaluée et s'est trouvée impossible à exécuter en raison d'une absence de prolifération. L'objectif 2 évalue la formation d'un endothélium cornéen sur un hydrogel biocompatible composé de courts peptides mimant le collagène (CLP) lié, ou non, au polyéthylène glycol (PEG). Les résultats ont démontré qu'un recouvrement de laminine 511 est nécessaire à l'adhésion des cellules aux hydrogels CLP, mais pas CLP-PEG, mais qu'il n'est tout de même pas possible de reformer une monocouche, en raison d'un décollement précoce des cellules ou de l'hydrogel. Le motif IKVAV de la laminine a été réticulé aux hydrogels pour éviter le décollement des cellules, mais n'a pas permis de reformer une monocouche confluente. Ce mémoire démontre que la rigidité du substrat influence la formation de jonctions intercellulaires et ouvre des pistes sur l'optimisation d'un biomatériau pouvant éventuellement servir de support à la culture de CECs. / The corneal endothelium is a monolayer of corneal endothelial cells (CECs) located on the posterior part of the cornea. It creates a permeable barrier, in part due to intercellular junctions. Damage to this monolayer leads to corneal edema and vision loss. The only treatment available is a corneal graft from a donor. An alternative would be to multiply CECs in culture and recreate a corneal endothelium onto a biocompatible biomaterial. This could allow to graft several patients using the cells of a single cornea. On the other hand, intercellular junction formation of CECs in culture must be enhanced in order to ensure the reconstructed endothelium's functionality. *In vivo*, CECs rest on the Descemet's membrane, which has an average stiffness in between 20 and 80 kPa. Objective 1 aims to determine how culturing CECs on a substrate of physiological stiffness influences the formation of intercellular junctions. To do so, two types of substrates with physiological stiffnesses were used. Our results demonstrate that polyacrylamide hydrogels are a better candidate than "CytoSoft" hydrogels for long-term culture of CECs. Thereafter, cell culture was optimized for intercellular junction formation. The optimal culture conditions included a type IV collagen coating, a maturation media with 5% fetal bovine serum and TGF-β2, and a stiffness of 50 kPa. Those conditions were then used to compare the culture on hydrogels to the culture on glass (70 GPa). Our results demonstrated that physiological stiffness can't restore endothelial phenotype and that culture of physiological-stiffness-conditioned CECs on hydrogel led to better intercellular junction formation than culture on glass. Finally, freshly isolated CEC expansion on hydrogel was evaluated and was found to be impossible to execute due to lack of proliferation. Objective 2 evaluates the formation of a corneal endothelium on a biocompatible hydrogel composed of collagen-like peptides (CLP), linked or not to polyethylene glycol (PEG). The results demonstrated that a laminin 511 coating is necessary for cell adhesion on CLP, but not CLP-PEG hydrogels, and that it is still not possible to reform a monolayer because of early detachment of the cells or the hydrogel. The IKVAV laminin motif was crosslinked to the hydrogels to avoid cell detachment, but could not reform a confluent monolayer. This master thesis demonstrates that substrate stiffness has an impact on intercellular junction formation and opens avenues to optimize a biomaterial that could be used as a support to cultivate CECs.
|
Page generated in 0.0509 seconds